博碩士論文 111521162 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:161 、訪客IP:3.142.243.141
姓名 劉佳聖(Jia-Sheng Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三相Vienna整流器於電網不平衡下考慮輸出不平衡與電壓利用率之輸入電流失真補償與輸出電壓漣波抑制之研製
(Development and Implementation of input current distor-tion compensation and output voltage ripple suppression of three-phase Vienna rectifier considering output imbal-ance and voltage utilization under unbalanced power grid)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略★ 具柔切三相分源逆變器與直交流電壓控制策略研製
★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製★ 考慮電網失真不平衡下三相反流器直接功 率控制之研製
★ 三相T-type整流器於不平衡電網下主動輸出電壓不平衡控制及直流端電壓漣波抑制★ 三相電網形成反流器之阻抗估算策略與新型諧波電壓抑制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 三相電網不平衡下之電流諧波抑制及直流鏈電壓擾動抑制為近年來整流器研究之重要課題。其中,三相Vienna整流器因其高效率及低成本之特性,已然成為廣受關注之三階層拓樸。然而,由於Vienna整流器倚賴電流極性決定導通方向之特性,使電流於零交越時將發生失真,且此現象於輸出中性點不平衡時更加明顯。此外,在電網不平衡情況下,為抑制直流鏈二次漣波擾動,需注入實虛功漣波命令進行補償,此補償機制將導致電流與電壓產生相位偏移,而此電流與電網電壓之相位差,將使Vienna整流器操作於高調製指數下時,容易進入不可合成區域,使參考電壓向量無法有效合成,引發嚴重之電流失真及電壓擾動問題。為了減少不可合成區域對三相Vienna整流器之影響,本文提出非單位功因下電流最佳化(NUPF-CO)策略,有效降低不可合成區域對系統性能之負面影響。此策略使三相Vienna整流器同時於電網不平衡及輸出中性點主動不平衡下,仍能實現直流鏈二次漣波之抑制與避免電流發生零交越失真,並確保良好之中性點電流擾動抑制與功因校正效果。此外,本文亦經由理論分析與數值計算,詳細比較所提策略與傳統策略之可操作範圍(無過調變範圍),並進一步推導出確保電流極性正確變換之最佳操作範圍,為系統設計提供完整之理論依據。
此外,隨著再生能源與電動車充電設備的普及,電力轉換設備所面臨之電網不平衡與負載不平衡問題日益嚴重。特別是於三相Vienna整流器中,輸出中性點不平衡將導致電流零交越失真及直流側電壓擾動,進而影響整體系統效能。針對此問題,本文提出一種交軸補償策略(RZCI, Reduced Zero-Crossing Interval),有效減少三相Vienna整流器在輸出中性點不平衡情況下之箝位區間範圍,進而降低直流側電壓擾動。且考慮到RZCI策略可能引入之電流諧波問題,制定補償範圍之上下限,確保補償後的三相Vienna整流器仍能符合國際規範所訂定的單一電流諧波限制。
並且本文亦經由結合所提NUPF-CO策略、所提RZCI策略與虛擬電容前饋電流方法,經由動態調整補償權重,使Vienna整流器能同時抑制電網不平衡造成之直流鏈二次漣波擾動,以及輸出中性點不平衡導致之直流側電壓擾動,同時維持良好之功率因數校正效果並消除零交越失真。
最後,本文經由實際建置2.5 kW之三相Vienna整流器進行實驗驗證,系統性地比較傳統SCIS、VJCIS策略與所提NUPF-CO策略於各種不平衡條件下之性能表現。實驗結果顯示,結合RZCI策略與虛擬電容技術的方案不僅能有效補償直流側電壓擾動,更能確保系統運行時的電流諧波符合相關規範要求,展現出優異的綜合性能。
摘要(英) Current harmonic suppression and DC-link voltage ripple mitigation under three-phase grid unbalance have become crucial research topics in rectifier studies in recent years. The three-phase Vienna rectifier has emerged as a widely recognized three-level topology due to its high efficiency and low-cost characteristics. However, due to its current polari-ty-dependent conduction mechanism, current distortion occurs at zero-crossing, and this phenomenon becomes more pronounced under output neutral point unbalance. Furthermore, under grid unbalance conditions, the injection of active and reactive power ripple commands is required to suppress DC-link second-order ripple disturbances. This compensation mecha-nism leads to phase shifts between current and voltage, and this phase difference between current and grid voltage can cause the Vienna rectifier to enter non-synthesizable regions at high modulation indices, where reference voltage vectors cannot be effectively synthesized, resulting in severe current distortion and voltage disturbance issues. To reduce the impact of non-synthesizable regions on the three-phase Vienna rectifier, this paper proposes a Non-Unity Power Factor Current Optimization (NUPF-CO) strategy, effectively mitigating the negative effects of non-synthesizable regions on system performance. This strategy ena-bles the three-phase Vienna rectifier to achieve DC-link second-order ripple suppression while avoiding current zero-crossing distortion under both grid unbalance and output neutral point active unbalance conditions, ensuring excellent neutral point current disturbance sup-pression and power factor correction effects. Moreover, through theoretical analysis and nu-merical calculations, this paper provides detailed comparisons of operating ranges (non-overmodulation ranges) between the proposed and conventional strategies, and further derives optimal operating ranges for ensuring proper current polarity transition, providing comprehensive theoretical foundations for system design.
Furthermore, with the proliferation of renewable energy and electric vehicle charging equipment, power conversion devices are increasingly facing grid unbalance and load un-balance issues. Particularly in three-phase Vienna rectifiers, output neutral point unbalance leads to current zero-crossing distortion and DC-side voltage disturbances, affecting overall system performance. Addressing this issue, this paper proposes a Reduced Zero-Crossing In-terval (RZCI) compensation strategy, effectively reducing the clamping interval range of three-phase Vienna rectifiers under output neutral point unbalance conditions, thereby de-creasing DC-side voltage disturbances. Considering potential current harmonic issues intro-duced by the RZCI strategy, upper and lower limits for compensation ranges are established to ensure the compensated three-phase Vienna rectifier still complies with individual current harmonic limits set by international standards.
This paper also combines the proposed NUPF-CO strategy, RZCI strategy, and virtual capacitor feedforward current method, with dynamic compensation weight adjustment, ena-bling the Vienna rectifier to simultaneously suppress DC-link second-order ripple disturb-ances caused by grid unbalance and DC-side voltage disturbances caused by output neutral point unbalance, while maintaining excellent power factor correction effects and eliminating zero-crossing distortion.
Finally, experimental validation is conducted on a 2.5 kW three-phase Vienna rectifier, systematically comparing the performance of traditional SCIS, VJCIS strategies with the proposed NUPF-CO strategy under various unbalance conditions. Experimental results demonstrate that the solution combining RZCI strategy and virtual capacitor technology not only effectively compensates for DC-side voltage disturbances but also ensures system oper-ation current harmonics meet relevant regulatory requirements, showcasing superior com-prehensive performance.
關鍵字(中) ★ 三相Vienna整流器
★ 中性點電流擾動抑制
★ 三相電網不平衡
★ 輸出電壓主動不平衡
★ 電流零交越失真
★ 不可合成區域
★ 向量空間
關鍵字(英) ★ Three-phase Vienna Rectifier
★ Neutral Point Current Disturbance Suppression
★ Three-phase Grid Unbalance
★ Active Output Voltage Imbalance
★ Current Zero-crossing Distortion
★ Non-synthesizable Region
★ Space Vector
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xxix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 本論文之貢獻 7
1-4 論文架構概述 10
第二章 三相Vienna整流器之控制架構 11
2-1 前言 11
2-2 三相整流器架構及工作原理 12
2-2-1三相Vienna整流器工作原理 12
2-2-2 三相整流器雙迴路電壓導向控制架構 14
2-2-3連續及不連續型脈波寬度調變 18
2-3 不平衡電網下之虛擬電容電流前饋控制[44] 26
2-4 三相整流器相關規範與定義 33
2-4-1電子設備電流諧波之規範 33
2-4-2電網三相不平衡率之規範 34
第三章 傳統三相Vienna整流器控制策略 35
3-1 前言 35
3-2 三相Vienna整流器主動輸出中性點電壓控制 36
3-2-1輸出中性點不平衡下之向量空間建立 36
3-2-2零交越區間及不可合成區間之成因 39
3-3 傳統三相Vienna整流器操作於輸出中性點不平衡下之策略 44
3-3-1輸出中性點主動不平衡控制與中性點電流擾動抑制 44
3-3-2電壓判斷成分注入法(Voltage Judgement Component Injection Scheme, VJCIS) [16] 52
第四章 所提不平衡電網下最小化電流失真控制策略 56
4-1 前言 56
4-2所提非單位功因電流最佳化(Non-Unity Power Factor Current Optimization, NUPF-CO) 57
4-2-1 補償前與補償後之可操作範圍計算 71
4-2-2 所提NUPF-CO之最佳操作範圍計算 78
4-3 所提不平衡電網下最小化電流零交越失真之虛擬電容電流前饋控制 87
第五章 所提輸出中性點不平衡下直流側電壓擾動抑制之補償策略 90
5-1 前言 90
5-2 所提中性點不平衡下零交越區間之虛功補償法 91
5-2-1 輸出中性點不平衡下輸出電壓擾動原因 91
5-2-2 所提直流側電壓擾動抑制之虛功補償命令計算 92
第六章 所提電網不平衡下輸出側電壓擾動及零交越失真抑制策略 102
6-1 前言 102
6-2 所提結合虛功補償之不平衡電網下輸出側電壓擾動及零交越失真抑制策略 103
第七章 模擬結果 107
7-1 模擬電路與元件參數 107
7-1-1 電壓導向架構(Voltage-Oriented Control) 107
7-1-2 分段成分注入法(SCIS)[11] 109
7-1-3 電壓判斷成分注入法(VJCIS)[16] 110
7-1-4 所提非單位功因電流最佳化策略(NUPF-CO) 111
7-1-5 三相不平衡電網下之虛擬電容電流前饋控制[44] 112
7-1-6 所提輸出中性點不平衡下減少零交越區間之補償策略 113
7-1-7 所提電網不平衡下輸出側電壓擾動及零交越失真抑制策略 114
7-2 主動輸出不平衡下操作於不同功率因數之模擬結果比較 115
7-3 不平衡電網下結合虛擬電容之模擬結果比較 136
7-4 加入所提輸出中性點不平衡下直流側電壓擾動抑制補償策略之模擬結果 164
7-5 所提輸出電壓擾動策略結合虛擬電容於不平衡電網下之模擬結果比較 171
第八章 實作電路結果 178
8-1 硬體電路與實驗設備介紹 178
8-2主動輸出不平衡下,傳統SCIS、傳統VJCIS與所提NUPF-CO方法操作於不同功率因數之實作結果比較 187
8-3電網不平衡且輸出中性點不平衡下,傳統SCIS、傳統VJCIS與所提NUPF-CO方法結合虛擬電容之實作結果比較 208
8-4加入所提RZCI策略之實作結果 233
8-5所提RZCI策略結合虛擬電容於不平衡電網下之實作結果 240
8-6所提策略之諧波與效率實作結果與分析 247
第九章 結論與未來展望 259
9-1 論文內容總結 259
9-2未來展望 260
參考文獻 262?
參考文獻 [1] A. M. Hava, R. J. Kerkman and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999, doi: 10.1109/63.737592.
[2] S. Bayhan and H. Komurcugil, "Sliding-Mode Control Strategy for Three-Phase Three-Level T-Type Rectifiers With DC Capacitor Voltage Balancing," IEEE Access, vol. 8, pp. 64555-64564, 2020, doi: 10.1109/ACCESS.2020.2980814.
[3] A. Sharida, S. Bayhan and H. Abu-Rub, "Adaptive Control Strategy for Three-Phase Three-Level T-Type Rectifier Based on Online Disturbance Estimation and Compensa-tion," IEEE Access, vol. 11, pp. 40967-40977, 2023, doi: 10.1109/ACCESS.2023.3269578.
[4] J. -S. Lee and K. -B. Lee, "Time-Offset Injection Method for Neutral-Point AC Ripple Voltage Reduction in a Three-Level Inverter," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1931-1941, March 2016, doi: 10.1109/TPEL.2015.2439689.
[5] P. Zhang, X. Wu, W. Xu, J. Liu, J. Qi and A. Yang, "A Compensation Component Injec-tion Method Based on a Hybrid Modulation for Minimizing the Neutral-Point Voltage Oscillations in a Five-Level Flying Capacitor Rectifier," IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 2705-2718, March 2022, doi: 10.1109/TPEL.2021.3113947.
[6] P. Karamanakos, K. Pavlou and S. Manias, "An Enumeration-Based Model Predictive Control Strategy for the Cascaded H-Bridge Multilevel Rectifier," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3480-3489, July 2014, doi: 10.1109/TIE.2013.2278965.
[7] J. W. Kolar and F. C. Zach, "A novel three-phase utility interface minimizing line cur-rent harmonics of high-power telecommunications rectifier modules," IEEE Transac-tions on Industrial Electronics, vol. 44, no. 4, pp. 456-467, Aug. 1997, doi: 10.1109/41.605619.
[8] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance," IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009, doi: 10.1109/TPEL.2009.2032262.
[9] J. -S. Lee and K. -B. Lee, "A Novel Carrier-Based PWM Method for Vienna Rectifier With a Variable Power Factor," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 3-12, Jan. 2016, doi: 10.1109/TIE.2015.2464293.
[10] W. Ding, C. Zhang, F. Gao, B. Duan and H. Qiu, "A Zero-Sequence Component Injec-tion Modulation Method With Compensation for Current Harmonic Mitigation of a Vi-enna Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 801-814, Jan. 2019, doi: 10.1109/TPEL.2018.2812810.
[11] W. Ding, H. Qiu, B. Duan, X. Xing, N. Cui and C. Zhang, "A Novel Segmented Com-ponent Injection Scheme to Minimize the Oscillation of DC-Link Voltage Under Bal-anced and Unbalanced Conditions for Vienna Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9536-9551, Oct. 2019, doi: 10.1109/TPEL.2019.2893688.
[12] Y. Fu, N. Cui, J. Song, Z. Chen, C. Fu and C. Zhang, "A Hybrid Control Strategy Based on Lagging Reactive Power Compensation for Vienna-Type Rectifier," IEEE Transac-tions on Transportation Electrification, vol. 7, no. 2, pp. 825-837, June 2021, doi: 10.1109/TTE.2020.3030277.
[13] B. Xu, K. Liu, X. Ran, Q. Huai and S. Yang, "Model Predictive Duty Cycle Control for Three-Phase Vienna Rectifiers With Reduced Neutral-Point Voltage Ripple Under Un-balanced DC Links," IEEE Journal of Emerging and Selected Topics in Power Elec-tronics, vol. 10, no. 5, pp. 5578-5590, Oct. 2022, doi: 10.1109/JESTPE.2022.3175583.
[14] Z. Zhang, G. Zhang, G. Wang, J. Wang, D. Ding and D. Xu, "A Hybrid Modulation Strategy With Neutral Point Voltage Balance Capability for Electrolytic Capacitorless Vienna Rectifiers," IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14294-14305, Dec. 2022, doi: 10.1109/TPEL.2022.3192438.
[15] D. Molligoda et al., "Hybrid Modulation Strategy for the Vienna Rectifier," IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1283-1295, Feb. 2022, doi: 10.1109/TPEL.2021.3103766.
[16] Y. -H. Liao, B. -R. Xie and J. -S. Liu, "A Novel Voltage Judgment Component Injection Scheme for Balanced and Unbalanced DC-link Voltages in Three-Phase Vienna Rectifi-ers," IEEE Transactions on Industrial Electronics, vol. 71, no. 11, pp. 13567-13577, Nov. 2024, doi: 10.1109/TIE.2024.3370943.
[17] J. -S. Lee and K. -B. Lee, "Performance Analysis of Carrier-Based Discontinuous PWM Method for Vienna Rectifiers With Neutral-Point Voltage Balance," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4075-4084, June 2016, doi: 10.1109/TPEL.2015.2477828.
[18] Y. -H. Liao, B. -R. Xie and J. -S. Liu, "Modeling and Control of Current Sensorless PFC Three-Phase Vienna Rectifier With Balanced and Unbalanced DC-Link Voltage," IEEE Transactions on Power Electronics, vol. 40, no. 3, pp. 4051-4066, March 2025, doi: 10.1109/TPEL.2024.3504515.
[19] Y. Zou et al., "Dynamic-Space-Vector Discontinuous PWM for Three-Phase Vienna Rectifiers With Unbalanced Neutral-Point Voltage," IEEE Transactions on Power Elec-tronics, vol. 36, no. 8, pp. 9015-9026, Aug. 2021, doi: 10.1109/TPEL.2021.3057120.
[20] L. Zhang et al., "A Modified DPWM With Neutral Point Voltage Balance Capability for Three-Phase Vienna Rectifiers," IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 263-273, Jan. 2021, doi: 10.1109/TPEL.2020.3002660.
[21] Z. He et al., "A Hybrid DPWM for Vienna Rectifiers Based on the Three-Level to Two-Level Conversion," IEEE Transactions on Industrial Electronics, vol. 69, no. 9, pp. 9429-9439, Sept. 2022, doi: 10.1109/TIE.2021.3112064.
[22] J. Wang, S. Ji, S. Liu, H. Jiang and W. Jiang, "A Discontinuous PWM Strategy to Con-trol Neutral Point Voltage for Vienna Rectifier With Improved PWM Sequence," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 3230-3241, June 2022, doi: 10.1109/JESTPE.2021.3120540.
[23] Z. Zhang et al., "Optimized Carrier-Based DPWM Strategy Adopting Self-Adjusted Redundant Clamping Modes for Vienna Rectifiers With Unbalanced DC Links," IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1622-1634, Feb. 2023, doi: 10.1109/TPEL.2022.3212072.
[24] Y. Pei, Y. Tang, H. Xu, J. Niu and L. Ge, "A Modified Carrier-Based DPWM With Re-duced Switching Loss and Current Distortion for Vienna Rectifier," IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12195-12206, Oct. 2023, doi: 10.1109/TPEL.2023.3298827.
[25] C. Liu, X. Xing, C. Du, B. Zhang, C. Zhang and F. Blaabjerg, "An Improved Model Predictive Control Method Using Optimized Voltage Vectors for Vienna Rectifier With Fixed Switching Frequency," IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 358-371, Jan. 2023, doi: 10.1109/TPEL.2022.3205946.
[26] Y. Zou, L. Zhang, Y. Xing, Z. Zhang, H. Zhao and H. Ge, "Generalized Clarke Trans-formation and Enhanced Dual-Loop Control Scheme for Three-Phase PWM Converters Under the Unbalanced Utility Grid," IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 8935-8947, Aug. 2022, doi: 10.1109/TPEL.2022.3153476.
[27] M. Z. Islam, M. S. Reza, M. M. Hossain and M. Ciobotaru, "Three-Phase PLL Based on Adaptive Clarke Transform Under Unbalanced Condition," IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 3, no. 2, pp. 382-387, April 2022, doi: 10.1109/JESTIE.2021.3065205.
[28] Y. Zhang, Z. Wang, J. Jiao and J. Liu, "Grid-Voltage Sensorless Model Predictive Con-trol of Three-Phase PWM Rectifier Under Unbalanced and Distorted Grid Voltages," IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8663-8672, Aug. 2020, doi: 10.1109/TPEL.2019.2963206.
[29] X. Ran, B. Xu, K. Liu and J. Zhang, "An Improved Low-Complexity Model Predictive Direct Power Control With Reduced Power Ripples Under Unbalanced Grid Condi-tions," IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5224-5234, May 2022, doi: 10.1109/TPEL.2021.3131794.
[30] Y. Zhang and Z. Min, "Model-Free Predictive Current Control of a PWM Rectifier Based on Space Vector Modulation Under Unbalanced and Distorted Grid Conditions," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2319-2329, April 2022, doi: 10.1109/JESTPE.2022.3150494.
[31] Hong-Seok Song and Kwanghee Nam, "Dual current control scheme for PWM convert-er under unbalanced input voltage conditions," IEEE Transactions on Industrial Elec-tronics, vol. 46, no. 5, pp. 953-959, Oct. 1999, doi: 10.1109/41.793344.
[32] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu and J. M. Carrasco, "En-hanced Decoupled Double Synchronous Reference Frame Current Controller for Un-balanced Grid-Voltage Conditions," IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3934-3943, Sept. 2012, doi: 10.1109/TPEL.2012.2190147.
[33] C. -Y. Tang and J. -H. Jheng, "An Active Power Ripple Mitigation Strategy for Three-Phase Grid-Tied Inverters Under Unbalanced Grid Voltages," IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 27-33, Jan. 2023, doi: 10.1109/TPEL.2022.3198410.
[34] Y. Zhang, J. Liu, H. Yang and J. Gao, "Direct Power Control of Pulsewidth Modulated Rectifiers Without DC Voltage Oscillations Under Unbalanced Grid Conditions," IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7900-7910, Oct. 2018, doi: 10.1109/TIE.2018.2807421.
[35] Yongsug Suh and T. A. Lipo, "Modeling and analysis of instantaneous active and reac-tive power for PWM AC/DC converter under generalized unbalanced network," IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1530-1540, July 2006, doi: 10.1109/TPWRD.2005.860274.
[36] Y. Zhang, J. Jiao, J. Liu and J. Gao, "Direct Power Control of PWM Rectifier With Feedforward Compensation of DC-Bus Voltage Ripple Under Unbalanced Grid Condi-tions," IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2890-2901, May-June 2019, doi: 10.1109/TIA.2019.2896063.
[37] Z. Xu, X. Ren, Z. Zheng, Z. Zhang, Q. Chen and Z. Hao, "A Quadrature Signal-Based Control Strategy for Vienna Rectifier Under Unbalanced Aircraft Grids," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5280-5289, Oct. 2022, doi: 10.1109/JESTPE.2022.3162948.
[38] Z. Zhang et al., "Negative Sequence Current Regulation Based Power Control Strategy for Vienna Rectifier Under Unbalanced Grid Voltage Dips," IEEE Transactions on In-dustrial Electronics, vol. 71, no. 2, pp. 1170-1180, Feb. 2024, doi: 10.1109/TIE.2023.3253959.
[39] Z. Shi et al., "A Novel Suppression Method for Input Current Zero-Crossing Distortion of the Vienna Rectifier Based on Negative-Sequence Current Regulation Under the Unbalanced Grid," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 4, pp. 3699-3714, Aug. 2024, doi: 10.1109/JESTPE.2024.3407649.
[40] Z. Zhang et al., "Direct-Axis Current Orientation-Based Grid Voltage Sensorless Con-trol Strategy for Vienna Rectifier Under Unbalanced and Distorted Grid Conditions," IEEE Transactions on Power Electronics, vol. 39, no. 9, pp. 10910-10920, Sept. 2024, doi: 10.1109/TPEL.2024.3409812.
[41] Y. Zhang, J. Jiao and J. Liu, "Direct Power Control of PWM Rectifiers With Online In-ductance Identification Under Unbalanced and Distorted Network Conditions," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12524-12537, Dec. 2019, doi: 10.1109/TPEL.2019.2908908.
[42] Y. Zhang, B. Li and J. Liu, "Online Inductance Identification of a PWM Rectifier Under Unbalanced and Distorted Grid Voltages," IEEE Transactions on Industry Applications, vol. 56, no. 4, pp. 3879-3888, July-Aug. 2020, doi: 10.1109/TIA.2020.2983665.
[43] A. Rahoui, A. Bechouche, H. Seddiki and D. Ould Abdeslam, "Virtual Flux Estimation for Sensorless Predictive Control of PWM Rectifiers Under Unbalanced and Distorted Grid Conditions," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 2, pp. 1923-1937, April 2021, doi: 10.1109/JESTPE.2020.2970042.
[44] T. Song, Y. Zhang, F. Gao, X. Zhu, J. Shan and Z. Kong, "Power Model Free Voltage Ripple Suppression Method of Three-Phase PWM Rectifier Under Unbalanced Grid," IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13799-13807, Nov. 2022, doi: 10.1109/TPEL.2022.3184403.
[45] IEC 61000-3-2:2018, "Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ?16 A per phase)," Interna-tional Electrotechnical Commission, Geneva, Switzerland, 2018.
[46] "Definitions of Voltage Unbalance," IEEE Power Engineering Review, vol. 21, no. 5, pp. 49-51, May 2001, doi: 10.1109/MPER.2001.4311362.
[47] Ching-Yin Lee, "Effects of unbalanced voltage on the operation performance of a three-phase induction motor," IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 202-208, June 1999, doi: 10.1109/60.766984.
[48] A. von Jouanne and B. Banerjee, "Assessment of voltage unbalance," IEEE Transac-tions on Power Delivery, vol. 16, no. 4, pp. 782-790, Oct. 2001, doi: 10.1109/61.956770.
[49] S. Bera, S. Chakraborty, S. Kar and S. R. Samantaray, "Hierarchical Control for Voltage Unbalance Mitigation Considering Load Management in Stand-Alone Microgrid," IEEE Transactions on Smart Grid, vol. 14, no. 4, pp. 2521-2533, July 2023, doi: 10.1109/TSG.2022.3222490.
[50] KK, Nandini, Jayalakshmi N. Sabhahit, and Vinay Kumar Jadoun. "Voltage unbalance assessment in a distribution system incorporated with renewable?based sources and electric vehicles in an uncertain environment." IET Renewable Power Generation (2024).
[51] Vijay, A. S., Suryanarayana Doolla, and Mukul C. Chandorkar. "Unbalance mitigation strategies in microgrids." IET Power Electronics 13.9 (2020): 1687-1710.
[52] M. Bhardwaj, "Vienna Rectifier-Based, Three-Phase Power Factor Correction (PFC) Reference Design Using C2000? MCU," Texas Instruments, Dallas, TX, USA, TIDM-1000, Nov. 2016.
[53] Y. Gui, M. Li, J. Lu, S. Golestan, J. M. Guerrero and J. C. Vasquez, "A Voltage Modu-lated DPC Approach for Three-Phase PWM Rectifier," IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7612-7619, Oct. 2018, doi: 10.1109/TIE.2018.2801841.
[54] Y. -H. Liao, W. -H. Hsu and B. -R. Xie, "A Linearized Time-Invariant Volt-age-Sensorless Direct Power Control for Three-Phase Vienna Rectifiers," IEEE Access, vol. 11, pp. 59033-59048, 2023, doi: 10.1109/ACCESS.2023.3284903.
[55] Z. Zeng, W. Zheng, R. Zhao, C. Zhu and Q. Yuan, "Modeling, Modulation, and Control of the Three-Phase Four-Switch PWM Rectifier Under Balanced Voltage," IEEE Trans-actions on Power Electronics, vol. 31, no. 7, pp. 4892-4905, July 2016, doi: 10.1109/TPEL.2015.2480539.
[56] D. Zhou, X. Li and Y. Tang, "Multiple-Vector Model-Predictive Power Control of Three-Phase Four-Switch Rectifiers With Capacitor Voltage Balancing," IEEE Transac-tions on Power Electronics, vol. 33, no. 7, pp. 5824-5835, July 2018, doi: 10.1109/TPEL.2017.2750766.
[57] M. E. Zarei, C. V. Nicolas, J. R. Arribas and D. Ramirez, "Four-Switch Three-Phase Operation of Grid-Side Converter of Doubly Fed Induction Generator With Three Vec-tors Predictive Direct Power Control Strategy," IEEE Transactions on Industrial Elec-tronics, vol. 66, no. 10, pp. 7741-7752, Oct. 2019, doi: 10.1109/TIE.2018.2880672.
[58] C. -Y. Li, N. -C. Chao and H. -C. Chen, "Design and Implementation of Four-Switch Current Sensorless Control for Three-Phase PFC Converter," IEEE Transactions on In-dustrial Electronics, vol. 67, no. 4, pp. 3307-3312, April 2020, doi: 10.1109/TIE.2019.2914643.
[59] P. Rodriguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, "Multi-resonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 127-138, Jan. 2011, doi: 10.1109/TIE.2010.2042420.
[60] Fuji Electric Co., Ltd., "2MBI450VH-120F-50 IGBT Modules," datasheet FM5F08575, Mar. 2015.
[61] GeneSiC Semiconductor, Inc., "GD2X100MPS06N 650V 200A SiC Schottky MPS Di-ode," datasheet, Mar. 2021.
[62] LEM Components, "Voltage Transducer LV 25-P," datasheet 981125/14, Nov. 1998.
[63] LEM Components, "Current Transducer LA 100-P," datasheet N° 97.09.34.000.0, ver. 12, Jan. 27, 2016.
[64] Linear Technology Corporation, "LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Mi-cropower DACs in SO-8," datasheet, 1996.
[65] Toshiba Corporation, "TLP250 GaAlAs Ired & Photo-IC Photocoupler," datasheet, Jun. 25, 2004.
[66] 許文瀚。「三相Vienna整流器無電壓感測線性非時變直接功率控制」。碩士論文,國立中央大學電機工程學系,2022。
[67] 謝秉融。「基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用」。碩士論文,國立中央大學電機工程學系,2023。
[68] 郭偉倫。「考慮不平衡電源之三相整流器線性化直接 功率控制之研製」。碩士論文,國立中央大學電機工程學系,2023。
[69] 陳品儒。「三相T-type整流器於不平衡電網下主動輸出電壓不平衡控制及直流端電壓漣波抑制」。碩士論文,國立中央大學電機工程學系,2024。
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2025-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明