博碩士論文 111521107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:173 、訪客IP:18.222.110.185
姓名 邱上銘(Shang-Ming Ciou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 無人機戶外繞物巡檢之路徑規劃及飛行控制
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要設計一架搭載 GPS 定位系統與單目鏡頭的無人航空載具 (UAV),針對大型物件場景進行點雲建置與外觀瑕疵檢測。為了實現這一目標,透過點雲建置、導航點設計與路徑規劃、飛行控制與高度補償,提升了無人機於戶外巡檢任務中的穩定性,以及瑕疵偵測等多項技術整合,完成對目標物件的全面檢測,同時,該方法也降低了工作人員因為攀高操作伴隨的風險。
在點雲建置部分,無人機以 Althold 或 Loiter 模式進行手動繞物飛行,並儲存帶有 GPS Exif 資訊的 RGB 影像。後續使用 OpenSFM 進行點雲建模,建立大型物件場景。同時,提出改進地面法向量厚度分析法,結合 RANSAC 移除點雲異常值,並使用 DBSCAN 聚類篩選出目標物件。最後進行主成分分析 (PCA) 將目標物件轉換至理想導航座標。在導航點設計與路徑規劃方面,分析目標物件邊框產生導航點,解決導航點銳角交錯問題,並以群心演算法進行篩選。為了取得最佳化路徑,採用模擬退火演算法 (SA) 結合貪婪演算法 (Greedy Algorithm),有效解決旅行商問題 (TSP)。此外,結合 ISS (Intrinsic Shape Signatures) 提取物件特徵點,確保無人機在繞物飛行時始終保持面向目標物件的穩定姿態。飛行控制與高度補償部分,則是使用 MobaXterm 上傳最佳路徑及飛行姿態至機載電腦,並使用 MAVROS 控制周邊設備。針對高度衰減問題,經過讀取氣壓計數據進行平滑化處理,分析高度變化趨勢,使用導航點上拉完成高度補償。此方法能分析不穩定氣壓計數據並加以判斷高度衰減趨勢。最後,針對繞物巡檢中所儲存的影像,採用 YOLOv8 網路架構進行瑕疵偵測,實驗結果顯示,大部分瑕疵檢測結果具有高信心度,能有效框選目標物件的外觀瑕疵,但部分視角仍存在瑕疵誤判情況。
摘要(英) The main objective of this thesis is to design an unmanned aerial vehicle (UAV) equipped with a GPS system and a monocular camera for constructing point clouds of large object scenes. After capturing the point cloud data, the system filters and corrects the objects, generates navigation points, path planning and object defect detection. The thesis aims to address major problem including navigation points transformation, UAV pose designed and defining the UAV′s viewpoint. This research extends and improves upon existing UAV-based visual localization for large object detection, making it applicable to open spaces such as statues, cars ,rooftop or water tanks. The ultimate goal is to enhance performance in outdoor environments.
The contributions of this thesis include filtering the point cloud to identify primary target objects, designing navigation points, path planning and coordinate transformation of navigation points combined with the UAV′s viewpoint for object inspection. Using GPS combined with a barometer compensation to improved the UAV′s stability and flight endurance that during outdoor flights.
The experimental process is as follows: First, manual flight that using Althold or Loiter mode for circling. Point cloud scenes will built by processing RGB images with GPS EXIF data through OpenSfM. RANSAC is applied to process the ground data, and we propose a method to extend the ground thickness to reduce outliers. DBSCAN filters and cluster the target objects and PCA transforms them to an ideal navigation coordinate system. After obtaining the target object, navigation points are generated using the method proposed in this thesis. At the same time overlapping navigation points created by sharp angles are solved and filtered with centroid algorithm and the Traveling Salesman Problem (TSP) is solved by Simulated Annealing (SA) combined with a Greedy Algorithm. Additionally, Intrinsic Shape Signatures (ISS) are used to obtain the object′s shape features that define the drone′s viewpoint and orientation.After the path planning, the data is uploaded to the UAV′s offboard control computer, where MAVROS is used to control peripheral devices such as altitude trending analysis, height compensation, object circling inspections, and gimbal control. Finally, during the object circling inspection, images are processed using YOLOv8 for defect detection.
關鍵字(中) ★ 無人機
★ 機器人作業系統
★ OpenSfM
★ 點雲處理
★ 座標轉換
★ 路徑規劃
★ 瑕疵偵測
關鍵字(英) ★ UAV
★ ROS
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1研究背景與動機 1
1.2 文獻回顧 2
1.3 論文目標 3
1.4 論文架構 3
第二章 系統架構與軟硬體介紹 4
2.1系統架構 4
2.2硬體介紹 6
2.2.1無人機硬體比較與介紹 6
2.2.2無人機掛載設備與傳輸設備介紹 10
2.2.3電腦設備與軟體介紹 14
2.3各節點功能介紹 15
2.3.1 gimbal_camera 15
2.3.2 save_images_GPSposition 15
2.3.3 auto_inspection_GPS 15
2.3.4 baro_value 16
2.3.5 height_compensate_check 16
2.3.6 MAV_sim_RC 16
第三章 模擬環境介紹與飛控參數調整 21
3.1 Unreal Engine及AirSim 21
3.1.1 Unreal Engine介紹 21
3.1.2 AirSim介紹 22
3.2 SITL介紹 23
3.3 模擬環境建置與飛控參數調整 24
第四章 實驗流程 30
4.1點雲建置 30
4.1.1 影像來源設定與GPS Exif介紹 30
4.1.2 OpenSfM參數調整 32
4.1.3 物件建模結果 33
4.2點雲前處理 35
4.2.1 點雲降採樣與過濾地平面 35
4.2.2 目標物件篩選 38
4.2.3 目標物件點雲旋轉 40
4.3導航點及姿態定義 42
4.3.1 x-y平面物件邊框篩選 42
4.3.2產生導航點 43
4.4 路徑規劃結合可視點 46
4.5 導航點座標轉換及雲台控制 50
4.6繞物巡檢及氣壓計補償 52
4.7 瑕疵偵測 57
4.7.1 資料蒐集 57
4.7.2 網路架構及訓練 59
第五章 實驗結果 61
5.1繞物巡檢及氣壓補償 61
5.2瑕疵偵測 67
第六章 結論與未來展望 68
6.1結論 68
6.2未來展望 68
參考文獻 70
參考文獻 [1] 戴祥印, 無人機於大型物件之自動外觀巡檢, 國立中央大學, 資訊與電機工程研究所, 碩士論文(王文俊指導), 2022年
[2] "AviationHunt," [Online]. Available: https://www.aviationhunt.com/aircraft-walk-around/
[3] 財團法人職業災害預防及重建中心," [Online]. Available: https://data.moenv.gov.tw/dataset/detail/STAT_P_126
[4] Z. Yang, W. C. Lee, H. N. Chan and M. Ge, "A Real-time Tunnel Surface Inspection System using Edge-AI on Drone," 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, Guangxi, China, 2022, pp. 749-754, doi: 10.1109/ICMA54519.2022.9856230.
[5] Seo, Junwon, Luis Duque, and Jim Wacker. "Drone-enabled bridge inspection methodology and application." Automation in construction 94 (2018): 112-126.
[6] Rakha, Tarek, and Alice Gorodetsky. "Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones." Automation in construction 93 (2018): 252-264.
[7] Y. -P. Huang, L. Sithole and T. -T. Lee, "Structure From Motion Technique for Scene Detection Using Autonomous Drone Navigation," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2559-2570, Dec. 2019, doi: 10.1109/TSMC.2017.2745419.
[8] A. Alsawy, A. Hicks, D. Moss and S. Mckeever, "An Image Processing Based Classifier to Support Safe Dropping for Delivery-by-Drone," 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 2022, pp. 1-5, doi: 10.1109/IPAS55744.2022.10052868.
[9] A. Parmar, R. Gaiiar and N. Gajjar, "Drone based Potholes detection using Machine Learning on various Edge AI devices in Real-Time," 2023 IEEE International Symposium on Smart Electronic Systems (iSES), Ahmedabad, India, 2023, pp. 22-26, doi: 10.1109/iSES58672.2023.00016.
?
[10] J. Zhang, "Using Drone-Based Remote Sensing Products to Detect Land Surface Conditions in Drylands," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 7421-7424, doi: 10.1109/IGARSS46834.2022.9884804.
[11] E. Titov, O. Limanovskaya, A. Lemekh and D. Volkova, "The Deep Learning Based Power Line Defect Detection System Built on Data Collected by the Cablewalker Drone," 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 2019, pp. 0700-0704, doi: 10.1109/SIBIRCON48586.2019.8958397
[12] A. A. Wirabudi, L. Hafiza and N. R. Fachrurrozi, "Design Autonomous Drone Control For Delivery Package using Prim Algorithm and Waypoint Method," 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2022, pp. 1183-1188, doi: 10.1109/ICTC55196.2022.9952874.
[13] Y. Chang and M. Jung, "Re-Routing Costs Evaluation for the Inflight Drone," 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2018, pp. 545-548, doi: 10.1109/CSCI46756.2018.00111.
[14] Li, Zhichao, Feng Wang and Naiyan Wang. “LiDAR R-CNN: An Efficient and Universal 3D Object Detector.” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 7542-7551.
[15] C. Hui, W. Tingting, D. Zuoxiao, L. Weibin and M. I. Menhas, "Power Equipment Segmentation of 3D Point Clouds Based on Geodesic Distance with K-means Clustering," 2021 6th International Conference on Power and Renewable Energy (ICPRE),Shanghai,China,2021,pp.317-321,doi: 10.1109/ICPRE52634.2021.9635211.
[16] G. Wang, Q. Wang, R. Zhao, C. Chen and Y. Lu, "Building Segmentation of UAV-based Oblique Photography Point Cloud Using DoPP and DBSCAN," 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 2022, pp. 233-236, doi: 10.1109/ICGMRS55602.2022.9849376.
[17] H. Yan, Z. Yuhang, H. Haobing and C. Pengju, "Research on Application of SLAM in Appearance Inspection of Civil Aviation Aircraft," 2022 2nd International Conference on Big Data Engineering and Education (BDEE), Chengdu, China, 2022, pp. 168-172, doi: 10.1109/BDEE55929.2022.00035.
[18] Y. Liu, J. Dong, Y. Li, X. Gong and J. Wang, "A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning," in IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-15, 2022, Art no. 5019315, doi: 10.1109/TIM.2022.3198713.
[19] D. Jia, C. Hu, K. Qin and X. Cui, "Planar Waypoint Generation and Path Finding in Dynamic Environment," 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, Beijing, China, 2014, pp. 206-211, doi: 10.1109/IIKI.2014.49.
[20] S. Lopez-Soriano, "“Plug-and-Play” Inventory Robots: Autonomous Itinerary Planning Through Autonomous Waypoint Generation," in IEEE Internet of Things Journal, vol. 11, no. 1, pp. 1711-1718, 1 Jan.1, 2024, doi: 10.1109/JIOT.2023.3290395.
[21] B. H. -Y. Lee, J. R. Morrison and R. Sharma, "Multi-UAV control testbed for persistent UAV presence: ROS GPS waypoint tracking package and centralized task allocation capability," 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 2017, pp. 1742-1750, doi: 10.1109/ICUAS.2017.7991424.
[22] “Mission Planner” [Online].Available:https://ardupilot.org/planner/ ,2024年12月
[23] “Ardupilot Measuring Vibration”:
[Online].Available:https://ardupilot.org/planner/docs/common-measuring-vibration.html,2024年12月
[24] “QM-MOTOR 4208 KV380 datasheet”
[Online]Available:https://www.qx-motor.net/products/qx-motor-qm4208-380kv-brushless-motor-accessories-for-rc-multirotor-quadcopter-hexa-drone?srsltid=AfmBOorkU9CSSu7n3NPMrWy8-14ZJZOPVB7k-6ASxoLHm9QQBJIjOrl3,2024年12月
[25] “Futaba RS3008SB datasheet”
[Online]Available:
https://www.tw-futaba.com.tw/Portals/0/FTB_Product/RC/Files/RX/R3008SB.pdf,2024年12月
[26] “HEX Pixhawk Cube Orange overview”
[Online]Available:
https://ardupilot.org/copter/docs/common-thecubeorange-overview.html,2024年12月
[27] C. Ma, Y. Zhou and Z. Li, "A New Simulation Environment Based on Airsim, ROS, and PX4 for Quadcopter Aircrafts," 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 2020, pp. 486-490, doi: 10.1109/ICCAR49639.2020.9108103.
[28] “MAVROS”[Online ] Available: https://github.com/mavlink/mavros,2024年12月

[29] “Unreal Engine”
[Online]Available:https://www.unrealengine.com/en-US,2024年12月
[30] “AirSim”
[Online]Available:https://microsoft.github.io/AirSim/,2024年12月
[31] Shah, Shital, et al. "Airsim: High-fidelity visual and physical simulation for autonomous vehicles." Field and Service Robotics: Results of the 11th International Conference. Springer International Publishing, 2018.

[32] ”Ardupilot SITL Simulator,”
[Online].Available : https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html,2024年11月
[33] ”Open3D Voxel DownSampling,”
[Online].Available : https://www.open3d.org/docs/0.6.0/python_api/open3d.geometry.voxel_down_sample.html,2024年11月
[34] ”Open3D RANSAC,”
[Online].Available : https://www.open3d.org/docs/latest/tutorial/pipelines/global_registration.html,2024年11月
[35] ”Open3D DBSCAN,”
[Online].Available : https://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html
,2024年11月
[36] ”Open3D ISS points,”
[Online].Available : https://www.open3d.org/docs/latest/tutorial/Advanced/iss_keypoint_detector.html,2024年11月
[37] R. Varghese and S. M., "YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness," 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 2024, pp. 1-6, doi: 10.1109/ADICS58448.2024.10533619.
[38] ”Ultralytics YOLOv8,”
[Online].Available : https://docs.ultralytics.com/zh/models/yolov8/
,2024年12月
指導教授 王文俊(Wen-June Wang) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明