博碩士論文 111521060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.117.157.139
姓名 歐智仁(OU,JHIH-REN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以時間多工進行的砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析
(InGaAs/InAlAs Single Photon Avalanche Diode for Photon Number Resolution Using Time Multiplexing)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 在不同種類的光偵測器中,單光子雪崩二極體(single-photon avalanche diode, SPAD)因其能在接近常溫的條件下操作,具有較低的暗計數率,且在光纖通訊的1550 nm波段中可作為量子密鑰分發(quantum key distribution, QKD)的光子接收偵測器而備受關注。因此,本文選擇研究基於III-V族材料的單光子雪崩二極體。
實驗室過往研究中,是對輸出電壓振幅進行次數機率統計以實現光子數解析。然而,當欲增加偏壓以提升增益時,雜訊隨機分布的可能性增加,導致光子解析的準確度受限;相反地,當偏壓下降致增益過低時,電壓分離度(voltage separation)會降低,進而影響光子數準確辨識的能力。因此,為提升元件的光子數解析性能,實驗室過去研究多著力於在增益與非理想效應之間取得平衡。
本文採用並設計了時間多工的量測方式,以減少非理想效應對光子數解析的影響。這一方法使量測結果符合泊松分布,並能針對3顆光子態進行分析。此外,本文分析並解釋了偵測效率與光子數解析之間的關係,實現了對入射光脈衝平均光子數近乎準確的重建。展望未來,我們提出了如何進一步提高光子數解析最大數目以及提升光子數辨識準確率的具體方法。
摘要(英) Among various types of photodetectors, single-photon avalanche diodes (SPADs) are highly regarded for their ability to operate near room temperature, low dark count rates, and suitability as single photon detectors in quantum key distribution (QKD) within the 1550 nm wavelength range used in fiber-optic communication. Therefore, this study focuses on investigating SPADs based on III-V materials.
In previous research conducted in our laboratory, photon-number resolution (PNR) was typically achieved by distinguishing output voltage amplitudes. However, increasing the bias voltage to enhance gain also increases the random noise distribution, thereby limiting the accuracy of PNR. Conversely, reducing the bias voltage lowers gain and reduces voltage separation, compromising the ability to accurately distinguish photon numbers. To address this challenge, prior studies had to carefully balance gain and non-ideal effects to optimize PNR performance.
In this study, we designed and employed a time-multiplexing measurement approach to reduce the impact of non-ideal effects on PNR. This approach resulted in measurement outcomes consistent with a Poisson distribution and enabled the analysis of three photon number states. Furthermore, we comprehensively analyzed the relationship between detection efficiency and PNR distribution, achieving a near-accurate reconstruction of the mean photon number for incident light pulses. Looking ahead, we proposed specific methods to further enhance the maximum resolvable photon number and improve the accuracy of photon-number discrimination.
關鍵字(中) ★ 時間多工
★ 光子數解析
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 光子數解析元件 2
1.3.1 矽光電倍增管(Silicon Photomultipliers, SiPM) 2
1.3.2 超導相變感測器(transition-edge sensor, TES) 3
1.3.3 單光子雪崩二極體(single photon avalanche diode, SPAD) 4
1.4 單光子雪崩二極體應用 5
1.4.1 單光子光達(Single-photon LiDAR, SPL) 5
1.4.2 量子密鑰傳輸(Quantum Key Distribution, QKD) 6
第二章 文獻探討 10
2.1 光子數解析技術(Photon number resolving technology) 10
2.1.1 仰賴元件自身能力(Inherent-capability) 10
2.1.2 空間多工(Spatial-multiplexing) 12
2.1.3 時間多工(Time-multiplexing) 13
第三章 單光子雪崩二極體原理及介紹 18
3.1 元件基本特性 18
3.1.1 電流電壓特性與操作原理 18
3.1.2 崩潰機制 19
3.2 元件操作電路 21
3.2.1 自由運作模式電路(Free running mode circuit) 21
3.2.2 閘控模式電路(Gated-mode circuit) 23
3.2.3 自差分電路(Self-Differencing Circuit) 25
3.3 元件重要參數特性 26
3.3.1 暗計數(Dark count rate, DCR) 26
3.3.2 後脈衝效應(Afterpulsing effect) 28
3.3.3 單光子偵測效率(Single-photon detection efficiency, SPDE) 29
3.3.4 光子數解析(Photon number resolving, PNR) 31
第四章 量測系統架構及實驗方法 33
4.1 元件電流電壓量測 33
4.2 暗計數量測 34
4.3 單光子檢測效率量測 36
4.4 光子數解析量測 38
4.4.1 時間多工架構 38
4.4.2 時序 39
4.4.3 光子數解析實驗方法 40
第五章 量測結果與討論 42
5.1 電流電壓量測 42
5.2 暗計數量測 44
5.3 單光子偵測效率量測 45
5.4 光子數解析量測 48
5.4.1 考慮檢測效率後重建的平均光子數 48
5.4.2 不同SPDE下的光子數解析 54
5.4.3 不同溫度下的光子數解析 58
5.4.4 不同平均光子數下的光子數解析 60
5.4.5 時間多工與元件自身能力光子數解析比較 65
第六章 結論與未來展望 67
參考文獻 68
參考文獻 [1] Jinhou Lin et al, “High-speed photon-number-resolving detection via a GHz-gated SiPM.” Optics Express, Vol.30, February 2022, pp.7501-7510.
[2] Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam, “Counting near-infrared single-photons with 95% efficiency.” Optics Express, Vol.16 (5), March 2008, pp.3032-3040.
[3] Aaron J. Miller et al, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination.” Applied Physics Letters, Vol.83 (4), July 2003, pp.791-793.
[4] Xiaolong Xu et al, “Development of Ti/Au Transition-Edge Sensors for Single-Photon Detection.” IEEE Transactions on Applied Superconductivity, Vol.34 (3), May 2024, pp.1-4.
[5] Kateryna Kuzmenko et al, “3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors.” Optics Express, Vol.28 (2), January 2020, pp.1330-1344.
[6] C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art.” ISPRS, Vol.64 (1), January 2009, pp.1-16.
[7] John J. Degnan, “Evolution of Single Photon Lidar: From Satellite Laser Ranging to Airborne Experiments to ICESat-2.” Photonics, Vol.11 (10), October 2024, pp.924.
[8] M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement.” Optical Engineering, Vol.40 (1), January 2001, pp.10-19.
[9] B. Schwarz, “Mapping the world in 3D.” Nature Photonics, Vol.4 (7), July 2010, pp.429-430.
[10] J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum.” Physical Review Letters, Vol.64 (21), May 1990, pp.2495-2498.
[11] Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion.” Physical Review Letters, Vol.61 (26), December 1988, pp.2921-2924.
[12] M. A. Putra et al, “Securing Text File Using Combination of Vigenere and One – Time Pad Cipher Algorithm.” Procedia Computer Science, Vol.227, 2023, pp.1030-1038.
[13] Donghoon Chang et al, “Cryptanalytic time–memory trade-off for password hashing schemes.” International Journal of Information Security, Vol.18 (2), April 2019, pp.163-180.
[14] A. I. Nurhadi and N. R. Syambas, “Quantum Key Distribution (QKD) Protocols: A Survey.” 2018 4th International Conference on Wireless and Telematics (ICWT), 2018, pp.1-5.
[15] Norbert Lutkenhaus, “Security against individual attacks for realistic quantum key distribution.” Physical Review. A, Atomic, Molecular, and Optical Physics, Vol.61 (5), 2000, pp.523041-5230410.
[16] B. E Kardynal, Z. L Yuan and A. J Shields, “An avalanche?photodiode based photon-number-resolving detector.” Nature Photonics, 2008, pp.425-428.
[17] Guang Wu, Yi Jian, E Wu and Heping Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode.” Optics Express, Vol.17 (21), October 2009, pp.18782-18787.
[18] N. Namekata, S. Adachi, and S. Inoue, Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths.” IEEE Photonics Technology Letters, Vol.22 (8), April 2010, pp.529-531.
[19] A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50 at 1310?nm with an InGaAs/InP avalanche diode gated at 1.25?GHz,” Applied Physics Letters, Vol.102 (14), April 2013.
[20] Yan Liang et al, “Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates.” Photonics Research, Vol.7 (3), March 2019, pp. A1-A6.
[21] D. Achilles et al, “Fiber-assisted detection with photon number resolution.” Optics Letters, Vol.28 (23), December 2003, pp.2387-2389.
[22] C. M. Natarajan et al, “Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.” Optics Express, Vol.21 (1), January 2013, pp.893-902.
[23] N. M. Sullivan et al, “Photon number resolving detection with a single-photon detector and adaptive storage loop.” New Journal of Physics, Vol.26 (4), May 2024.
[24] K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector.” Optics Letters, Vol.28 (1), January 2003, pp.52-54.
[25] J. ?eha?ek et al, “Multiple-photon resolving fiber-loop detector.” Physical Review. A, Atomic, Molecular, and Optical Physics, Vol.67 (6), June 2003, pp.618011-618014.
[26] J. Tiedau et al, “A high dynamic range optical detector for measuring single photons and bright light.” Optics Express, Vol.27 (1), January 2019, pp.1-15.
[27] J. G. Webb and E. H. Huntington, “Photostatistics reconstruction via loop detector signatures.” Optics Express, Vol.17 (14), July 2009, pp.11799-11812.
[28] M. Jonsson et al, “Temporal array with superconducting nanowire single-photon detectors for photon-number resolution.” Physical Review. A, Vol.102 (5), November 2020.
[29] D. Achilles et al, “Photon number resolving detection using time-multiplexing.” InternationalQuantum Electronics Conference, 2004, pp.660-662.
[30] G. Acconcia et al, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.” Optics Express, Vol.24 (16), August 2016, pp.17819-17831.
[31] S. Cova et al, “Avalanche photodiodes and quenching circuits for single-photon detection.” Applied Optics, Vol.35 (12), April 1996, pp.1956-1976.
[32] M. Moreno-Garcia et al, “Characterization-Based Modeling of Retriggering and Afterpulsing for Passively Quenched CMOS SPADs.” IEEE Sensors Journal, Vol.19 (14), July 2019, pp.5700-5709.
[33] W. Shockley and W. T. Read, “Statistics of the Recombination of Holes and Electrons.” Physical Review, Vol.87 (5), September 1952, pp.835-842.
[34] 甘偉宏:〈以自差分模式操作砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析之研究〉。碩士論文,國立中央大學,民國113年。
指導教授 李依珊 許晉瑋 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明