參考文獻 |
[1] Jinhou Lin et al, “High-speed photon-number-resolving detection via a GHz-gated SiPM.” Optics Express, Vol.30, February 2022, pp.7501-7510.
[2] Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam, “Counting near-infrared single-photons with 95% efficiency.” Optics Express, Vol.16 (5), March 2008, pp.3032-3040.
[3] Aaron J. Miller et al, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination.” Applied Physics Letters, Vol.83 (4), July 2003, pp.791-793.
[4] Xiaolong Xu et al, “Development of Ti/Au Transition-Edge Sensors for Single-Photon Detection.” IEEE Transactions on Applied Superconductivity, Vol.34 (3), May 2024, pp.1-4.
[5] Kateryna Kuzmenko et al, “3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors.” Optics Express, Vol.28 (2), January 2020, pp.1330-1344.
[6] C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art.” ISPRS, Vol.64 (1), January 2009, pp.1-16.
[7] John J. Degnan, “Evolution of Single Photon Lidar: From Satellite Laser Ranging to Airborne Experiments to ICESat-2.” Photonics, Vol.11 (10), October 2024, pp.924.
[8] M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement.” Optical Engineering, Vol.40 (1), January 2001, pp.10-19.
[9] B. Schwarz, “Mapping the world in 3D.” Nature Photonics, Vol.4 (7), July 2010, pp.429-430.
[10] J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum.” Physical Review Letters, Vol.64 (21), May 1990, pp.2495-2498.
[11] Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion.” Physical Review Letters, Vol.61 (26), December 1988, pp.2921-2924.
[12] M. A. Putra et al, “Securing Text File Using Combination of Vigenere and One – Time Pad Cipher Algorithm.” Procedia Computer Science, Vol.227, 2023, pp.1030-1038.
[13] Donghoon Chang et al, “Cryptanalytic time–memory trade-off for password hashing schemes.” International Journal of Information Security, Vol.18 (2), April 2019, pp.163-180.
[14] A. I. Nurhadi and N. R. Syambas, “Quantum Key Distribution (QKD) Protocols: A Survey.” 2018 4th International Conference on Wireless and Telematics (ICWT), 2018, pp.1-5.
[15] Norbert Lutkenhaus, “Security against individual attacks for realistic quantum key distribution.” Physical Review. A, Atomic, Molecular, and Optical Physics, Vol.61 (5), 2000, pp.523041-5230410.
[16] B. E Kardynal, Z. L Yuan and A. J Shields, “An avalanche?photodiode based photon-number-resolving detector.” Nature Photonics, 2008, pp.425-428.
[17] Guang Wu, Yi Jian, E Wu and Heping Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode.” Optics Express, Vol.17 (21), October 2009, pp.18782-18787.
[18] N. Namekata, S. Adachi, and S. Inoue, Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths.” IEEE Photonics Technology Letters, Vol.22 (8), April 2010, pp.529-531.
[19] A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50 at 1310?nm with an InGaAs/InP avalanche diode gated at 1.25?GHz,” Applied Physics Letters, Vol.102 (14), April 2013.
[20] Yan Liang et al, “Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates.” Photonics Research, Vol.7 (3), March 2019, pp. A1-A6.
[21] D. Achilles et al, “Fiber-assisted detection with photon number resolution.” Optics Letters, Vol.28 (23), December 2003, pp.2387-2389.
[22] C. M. Natarajan et al, “Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.” Optics Express, Vol.21 (1), January 2013, pp.893-902.
[23] N. M. Sullivan et al, “Photon number resolving detection with a single-photon detector and adaptive storage loop.” New Journal of Physics, Vol.26 (4), May 2024.
[24] K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector.” Optics Letters, Vol.28 (1), January 2003, pp.52-54.
[25] J. ?eha?ek et al, “Multiple-photon resolving fiber-loop detector.” Physical Review. A, Atomic, Molecular, and Optical Physics, Vol.67 (6), June 2003, pp.618011-618014.
[26] J. Tiedau et al, “A high dynamic range optical detector for measuring single photons and bright light.” Optics Express, Vol.27 (1), January 2019, pp.1-15.
[27] J. G. Webb and E. H. Huntington, “Photostatistics reconstruction via loop detector signatures.” Optics Express, Vol.17 (14), July 2009, pp.11799-11812.
[28] M. Jonsson et al, “Temporal array with superconducting nanowire single-photon detectors for photon-number resolution.” Physical Review. A, Vol.102 (5), November 2020.
[29] D. Achilles et al, “Photon number resolving detection using time-multiplexing.” InternationalQuantum Electronics Conference, 2004, pp.660-662.
[30] G. Acconcia et al, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.” Optics Express, Vol.24 (16), August 2016, pp.17819-17831.
[31] S. Cova et al, “Avalanche photodiodes and quenching circuits for single-photon detection.” Applied Optics, Vol.35 (12), April 1996, pp.1956-1976.
[32] M. Moreno-Garcia et al, “Characterization-Based Modeling of Retriggering and Afterpulsing for Passively Quenched CMOS SPADs.” IEEE Sensors Journal, Vol.19 (14), July 2019, pp.5700-5709.
[33] W. Shockley and W. T. Read, “Statistics of the Recombination of Holes and Electrons.” Physical Review, Vol.87 (5), September 1952, pp.835-842.
[34] 甘偉宏:〈以自差分模式操作砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析之研究〉。碩士論文,國立中央大學,民國113年。 |