博碩士論文 111521138 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:860 、訪客IP:18.116.43.130
姓名 許耀中(YAO-CHUNG HSU)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於橋式T線圈 之微型化三頻微波被動電路設計
(Design of miniaturized Tri-band microwave passive circuits based on bridge T-coils)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-16以後開放)
摘要(中) 本論文以微型化三頻微波被動電路設計為研究目標,提出使用三頻橋式T線圈(Bridged-T Coil, BTC)實現三頻等效傳輸線的設計方法,成功實現積體化之三頻分支線耦合器及威爾金森功率分配器。本研究在現有的三頻橋式T線圈設計理論基礎上,進行設計方式的優化,有效改善先前設計中第一操作頻率的頻偏問題。設計優化前所完成之9.4 / 19 / 25 GHz三頻分支線耦合器,雖然電路面積僅1.643 mm × 1.726 mm,但其第一操作頻率與設計目標11.5 GHz相比有2.1 GHz的頻偏。本研究所提出的第一種設計優化方式,是以三個橋式T線圈串接實現三頻等效傳輸線,並應用於微型化三頻威爾金森功率分配器的設計,其操作頻率為6.7 / 14.2 / 17.6 GHz,電路面積僅0.805 mm × 1.33 mm,其第一操作頻率相較於設計目標8 GHz的頻偏降為1.3 GHz。而第二種設計優化方式則採用四個橋式T線圈串接組成三頻等效傳輸線,並據以實現微型化之三頻威爾金森功率分配器,其操作頻率為6.7 / 14.5 / 18.4 GHz,電路面積僅0.88 mm × 1.33 mm,其第一操作頻率相較於設計目標8 GHz亦只有1.3 GHz的頻偏。此外,相較於既有三頻威爾金森功率分配器設計,本研究所提出之兩種設計均成功達成大幅縮減電路面積之目的。
摘要(英) This thesis focuses on the design of miniaturized tri-band microwave passive circuits using bridged-T-coils (BTC). Specifically, miniature tri-band branch-line coupler and Wilkinson power divider designs are demonstrated. Especially, this research improves the design methodology such that the frequency shift at the first operating frequency in previous designs can be much reduced. First, a tri-band branch-line coupler operating at 9.4 / 19 / 25 GHz was realized with a compact circuit size of only 1.643 mm × 1.726 mm. However, its first operating frequency exhibited a 2.1 GHz deviation from the design target of 11.5 GHz. To reduce the frequency shift, the first method is to use three bridged-T-coils in cascaded to realize a tri-band equivalent transmission line. It is then applied to the design of a miniaturized tri-band Wilkinson power divider operating at 6.7 / 14.2 / 17.6 GHz, achieving a compact circuit size of just 0.805 mm × 1.33 mm. The frequency shift of the first operating frequency is reduced to 1.3 GHz from the design target of 8 GHz. Next,the second method for reducing the frequency shift employs four bridged-T-coils in cascade to form a tri-band equivalent transmission line. It is also applied to the design of a miniaturized tri-band Wilkinson power divider operating at 6.7 / 14.5 / 18.4GHz, and a very compact circuit size of only 0.88 mm × 1.33 mm is achieved. The shift in first operating frequency is also 1.3 GHz from the design target of 8 GHz. In addition,compared to existing tri-band Wilkinson power divider designs, the proposed ones achieve significant reduction in circuit size.
關鍵字(中) ★ 橋式T線圈
★ 分支線耦合器
★ 威爾金森功率分配器
關鍵字(英) ★ Bridged-T Coil
★ branch-line coupler
★ Wilkinson power divider
論文目次 論文摘要 I
Abstract II
目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 章節介紹 8
第二章 三頻橋式T線圈設計原理與優化 9
2.1 以三個BTC串接之等效傳輸線 9
2.2 以四個BTC串接之等效傳輸線 17
2.3 結果與討論 24
第三章 微型化三頻分支線耦合器設計 25
3.1 電路架構 25
3.2 橋式T線圈佈局設計 29
3.3 耦合器電路實作與量測 42
3.4 結果與討論 50
第四章 微型化三頻威爾金森功率分配器設計 53
4.1 電路架構 53
4.1.1 以三個BTC串接之等效傳輸線 53
4.1.2 以四個BTC串接之等效傳輸線 58
4.2 三頻橋式T線圈之佈局設計 62
4.2.1 以WIPD實現三個BTC串接之等效傳輸線 62
4.2.2 以WIPD實現四個BTC串接之等效傳輸線 74
4.3 三頻Wilkinson Power Divider之電路實作與量測 92
4.3.1 以三個BTC串接,實現之微型化三頻威爾金森功率分配器 92
4.3.2 以四個BTC串接實現微型化之三頻威爾金森功率分配器 100
4.4 結果與討論 107
第五章 總結與未來展望 111
參考文獻 113
參考文獻 [1] 廖涎佐, "以橋式T線圈實現微型化三頻分支線耦合器," 碩士論文 國立中央大學, 2023.
[2] C. -Y. Liou, M. -S. Wu, J. -C. Yeh, Y. -Z. Chueh and S. -G. Mao, "A Novel Triple-Band Microstrip Branch-Line Coupler With Arbitrary Operating Frequencies," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 683-685, Nov. 2009, doi: 10.1109/LMWC.2009.2031998.
[3] F. Lin and Q. Chu, "Tri-band branch-line coupler with T-type and additional port impedance transformers," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012, pp. 1-2.
[4] H. Ren, J. Shao, M. Zhou, B. Arigong, J. Ding and H. Zhang, "Design of tri-band branch-line couplers using novel tri-band transmission lines," Texas Symposium on Wireless and Microwave Circuits and Systems, 2014, pp. 1-4, doi: 10.1109/WMCaS.2014.7015884.
[5] W. Feng, Y. Zhao, W. Che, H. Chen and W. Yang, "Dual-/tri-band branch line couplers with high power division isolation using coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 4, pp. 461-465, April 2018.
[6] C. -W. Tang and M. -G. Chen, "Design of Multipassband Microstrip Branch-Line Couplers With Open Stubs," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, pp. 196-204, Jan. 2009, doi: 10.1109/TMTT.2008.2008982.
[7] L. Piazzon, P. Saad, P. Colantonio, F. Giannini, K. Andersson and C. Fager, "Branch-Line Coupler Design Operating in Four Arbitrary Frequencies," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 67-69, Feb. 2012, doi: 10.1109/LMWC.2011.2181349.
[8] S. A. Imam, A. M. Zaidi, A. Choudhary, B. K. Kanaujia and M. K. Singh, "A quad band quadrature branch line coupler using coupled line sections," 2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 2017, pp. 120-123, doi: 10.1109/ICAM.2017.8242151.
[9] X. Li, M. Helaoui, F. Ghannouchi and W. Chen, "A Quad-Band Doherty Power Amplifier Based on T-Section Coupled Lines," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 6, pp. 437-439, June 2016, doi: 10.1109/LMWC.2016.2559501.
[10] A. M. Zaidi, M. T. Beg, B. K. Kanaujia and K. Rambabu, "Hexa-Band Branch Line Coupler and Wilkinson Power Divider for LTE 0.7 GHz, LTE 1.7 GHz, LTE 2.6 GHz, 3.9 GHz, Public Safety Band 4.9 GHz, and WLAN 5.8 GHz Frequencies," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 275-279, Feb. 2020, doi: 10.1109/TCSII.2019.2909577.
[11] B. W. Xu, S. Y. Zheng and W. Che, "Flexible Tri-Band Coupler With Three Independently Tunable Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 9, pp. 5441-5454, Sept. 2024, doi: 10.1109/TMTT.2024.3370916
[12] M. Chongcheawchamnan, S. Patisang, M. Krairiksh, and I. D. Robertson, “Tri-band Wilkinson power divider using a three-section transmission-line transformer,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 452–454, Aug. 2006.
[13] B. M. Abdelrahman, H. N. Ahmed and A. I. Nashed, "A Novel Tri-Band Wilkinson Power Divider for Multiband Wireless Applications," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 10, pp. 891-893, Oct. 2017, doi: 10.1109/LMWC.2017.2746685.
[14] A. Genc and R. Baktur, "Dual- and Triple-Band Wilkinson Power Dividers Based on Composite Right- and Left-Handed Transmission Lines," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 3, pp. 327-334, March 2011, doi: 10.1109/TCPMT.2010.2104323.
[15] Zhebin Wang and Chan-Wang Park, "Multiband pi-shaped structure with resonators for tri-band wilkinson power divider and tri-band rat-race coupler," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3, doi: 10.1109/MWSYM.2012.6259462.
[16] R. Loeches-Sanchez, D. Psychogiou, D. Peroulis and R. Gomez-Garcia, "A class of planar multi-band Wilkinson-type power divider with intrinsic filtering functionality," 2015 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 2015, pp. 138-140, doi: 10.1109/RWS.2015.7129746.
[17] C. Liu, M. Wu, J. Yuan, K. L. Chung and Y. Li, "A Tri-band Wilkinson Power Divider Based on Triple Section Step-Impedance Resonator," 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020, pp. 765-767, doi: 10.1109/ICEICT51264.2020.9334186.
[18] 莊競輝, "單頻和雙頻帶可重組式微波被動元件," 碩士論文 國立中央大學, 2020.
[19] 劉沚宜, "微型化三頻毫米波被動電路設計," 碩士論文 國立中央大學, 2024.
[20] W. -T. Fang, E. -W. Chang and Y. -S. Lin, "Bridged-T Coil for Miniature Dual-Band Branch-Line Coupler and Power Divider Designs," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 889-901, Feb. 2018, doi: 10.1109/TMTT.2017.2756960.
[21] David M. Pozar , "Microwave Engineering 4rd edition," 2011 New York :John Wiley & Sons .p.343
[22] David M. Pozar , "Microwave Engineering 4rd edition," 2011 New York :John Wiley & Sons .p.314
[23] F. Lin, Q. -X. Chu and Z. Lin, "A Novel Tri-Band Branch-Line Coupler With Three Controllable Operating Frequencies," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 12, pp. 666-668, Dec. 2010, doi: 10.1109/LMWC.2010.2074191.
[24] S. Tanigawa, K. Hayashi, T. Fuji, T. Kawai and I. Ohta, "Tri-band/broadband matching techniques for 3-dB branch-line couplers," 2007 European Microwave Conference, Munich, Germany, 2007, pp. 560-563, doi: 10.1109/EUMC.2007.4405252.
[25] N. Huang, X. Yi, C. C. Boon, X. Zhao, J. Sun and G. Feng, "Design of a fully integrated CMOS dual K- and W-band lumped wilkinson power divider," 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA, 2013, pp. 788-791, doi: 10.1109/MWSCAS.2013.6674767.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明