博碩士論文 110521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:18.222.110.185
姓名 陳加琳(Chia-Lin Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 電感耦合隔離系統接收端設計與實作
(Design and Implementation of the Receiver for an Inductively Coupled Isolation System)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於光耦合隔離系統發送端之動態縮放式 類比數位轉換器
★ 應用於光耦合隔離系統之發送端三角積分調變器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於半導體發展隨著摩爾定律,算力提升、能耗下降與製作成本降低,使人類社會對電力設備的應用更加創新,當晶片與電路板足夠小,設備續航力足夠且價格大多數人可以接受時,就到達科技發展的奇異點,即第四次工業革命。主要著重於穿戴設備的互聯性、電子產品自動化、機械學習和即時數據傳輸等方面。藉由演算法和控制工程機械等設備實現自動化監測和數據分析,思維突破進而創新。
近年來的工業控制設備中,如工業自動化逆變器,交流伺服馬達控制器,用於再生能源的功率調節器等應用,都需要隔絕兩側電壓電源以確保設備的安全性。其中晶片裡的隔離放大器就格外重要,要考慮其傳輸速度、消耗功率與最高隔絕電壓,本文以整體系統制定傳輸速度,隔離元件製作於晶片內部減少面積,降低消耗功率為目標。
本論文實現應用於磁耦合隔離系統,電路架構主要分為兩部分,基於變壓器的磁耦合數位隔離放大器與時脈資料回復電路,數位隔離放大器以Pulse Polarity為基礎架構,具有較小變壓器面積與較低功耗的優勢,細部電路架構有邊緣檢測器(Edge Dectetor)檢測正緣與負緣,限流反向器(Current Limiting Inverter)去抑制會造成邏輯錯亂的反向波,Metal 6與Metal 4 的螺旋電感(Spiral Inductor)堆疊成變壓器,用集總電路(Lump circuit)的方式去分析變壓器的寄生,再以高速脈衝檢測器與比較器將數位訊號還原;時脈資料回復電路(Clock Data Recovery)細部架構包含,相位檢測器(Phase Detector)、充電泵(Charge Pump)、迴路濾波器(Loop Filter)和電壓控制震盪器(Voltage Control Oscillator),在相對低速的環境,選擇Hogge 相位檢測器以符合需求,採用雙路徑充電泵的迴路濾波器以降低濾波器中電容元件的面積。
本電路採用台積電0.18μm CMOS 1P6M製程,晶片面積約佔0.810 mm2,電源供應電壓為1.8 V,整體電路功耗為21.83 mW,電路傳輸速度為28.8Mbps,電感直徑為276 μm,隔離電壓值為170 V,瞬態共模噪音抑制 (CMTI)為35 kV/μs,鎖定時間為24.2 μs,時脈抖動為28.12 ps。
摘要(英) With the advancement of semiconductor technology driven by Moore′s Law, computational power has increased, energy consumption has decreased, and manufacturing costs have been reduced. These developments have led to innovative applications of electrical equipment in human society. When chips and circuit boards become sufficiently small, devices achieve adequate battery life, and prices become affordable to the majority, the technological singularity of development—namely the Fourth Industrial Revolution—is reached. This revolution focuses on the interconnectivity of wearable devices, automation of electronic products, machine learning, and real-time data transmission. Through algorithms, control engineering, and mechanical systems, automation monitoring and data analysis are realized, breaking traditional boundaries and fostering innovation.
In recent years, industrial control equipment, such as industrial automation inverters, AC servo motor controllers, and power regulators for renewable energy, has increasingly required isolation between voltage sources on both sides to ensure equipment safety. Among these components, isolation amplifiers embedded in chips play a critical role. These amplifiers must balance considerations of transmission speed, power consumption, and maximum isolation voltage. This thesis sets the transmission speed based on the overall system, integrates the isolation components within the chip to reduce area, and aims to minimize power consumption.
This thesis implements a circuit architecture for magnetic coupling isolation systems, primarily consisting of two parts: a transformer-based magnetically coupled digital isolation amplifier and a clock data recovery (CDR) circuit. The digital isolation amplifier is based on the pulse polarity architecture, offering advantages such as smaller transformer area and lower power consumption. The detailed circuit design includes edge detectors for detecting rising and falling edges, current-limiting inverters to suppress counter-pulses that may cause logic errors, and a transformer constructed by stacking spiral inductors using Metal 6 and Metal 4 layers. A lumped circuit model is employed to analyze the transformer′s parasitics, while high-speed pulse detectors and comparators are used to recover digital signals.
The CDR circuit comprises a phase detector, charge pump, loop filter, and voltage-controlled oscillator (VCO). For relatively low-speed environments, a Hogge phase detector is adopted to meet the requirements, and a dual-path charge pump loop filter is utilized to reduce the area of the capacitive components within the filter.
The circuit is fabricated using TSMC’s 0.18 μm CMOS 1P6M process, with a chip area of approximately 0.810 mm2. The supply voltage is 1.8 V, and the total circuit power consumption is 21.83 mW. The circuit achieves a transmission speed of 28.8 Mbps, with an inductor diameter of 276 μm, an isolation voltage of 170 V, transient common-mode noise immunity (CMTI) of 35 kV/μs, a lock time of 24.2 μs, and clock jitter of 28.12 ps.
關鍵字(中) ★ 電感耦合
★ 數位隔離放大器
★ 時脈資料回復電路
關鍵字(英) ★ Inductor Coupling
★ Digital Isolator
★ Clock Data Recovery
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 背景 1
1.2 研究動機 2
1.3 論文貢獻 2
1.4 論文架構 3
第二章 應用於磁耦合隔離系統 4
2.1 架構比較 5
2.2 電感設計 6
2.1.1 晶片剖面圖 6
2.2.2 電感參數 7
2.2.3傳統電感模型 8
2.2.4 電感長度 8
2.2.5 直流電感與直流電阻 10
2.2.6等效電感模型 12
2.3 接地迴路 15
2.4 時脈資料回復電路 16
2.3.1 無參考時脈的時脈資料回復電路 17
2.3.2 有參考時脈的時脈資料回復電路 18
第三章 隔離放大器電路設計 19
3.1 隔離放大器原理 19
3.1.1 系統規格 21
3.1.2 傳送端架構 22
3.1.3 接收端架構 24
3.2 時脈資料回復電路 28
3.2.1 相位檢測器 28
3.2.2 充電泵 30
3.2.3 迴路濾波器 31
3.2.4 電壓控制震盪器 33
3.2.5 相位迴路的線性系統分析 35
3.2.6 時脈抖動介紹 38
第四章 隔離放大器模擬結果 40
4.1隔離放大器電路模擬結果 40
4.1.1 非重疊訊號產生器模擬結果 40
4.1.2 邊緣檢測器模擬結果 40
4.1.3 非理想螺旋電感等效電路 41
4.1.4 差動差分放大器模擬結果 42
4.1.5 施密特觸發器模擬結果 44
4.1.6 隔離放大器模擬結果 44
4.2 時脈資料回復電路模擬結果 49
4.2.1 相位檢測器模擬結果 49
4.2.2 充電泵模擬結果 50
4.2.3 電壓控制震盪器模擬結果 51
4.2.4 時脈資料回復電路模擬結果 52
第五章 佈局考量與量測考量 55
5.1 佈局考量 55
5.2 佈局後模擬結果 57
5.2.1 隔離放大器佈局後模擬結果 57
5.2.2時脈資料回復電路佈局後模擬結果 58
5.3 量測規劃 62
第六章 結論與未來展望 64
6.1 文獻比較 64
6.2 未來展望 65
參考文獻 66
參考文獻 [1] Fandrich C L. “An on-chip transformer-based digital isolator system.” Master′s thesis. The University of Tennessee, Knoxville, USA, 2013
[2] Toshiba,“Photocouplers Opticaly Isolation Amplifiers,” TLP7820 datasheet, Jun. 2020
[3] S. Kaeriyama, S. Uchida, M. Furumiya, M. Okada, T. Maeda and M. Mizuno, "A 2.5 kV Isolation 35 kV/us CMR 250 Mbps Digital Isolator in Standard CMOS With a Small Transformer Driving Technique," in IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 435-443, Feb. 2012, doi: 10.1109/JSSC.2011.2170775.
[4] 陳清文, CMOS螺旋電感等效電路之探討, 國立交通大學電信工程學系碩士論文, 中華民國九十四年六月
[5] S. S. Mohan, “The Design, Modeling and Optimization of On-Chip Inductor and Transformer Circuits,” Ph.D. dissertation, Dept. of Electrical Engineering, Stanford Univ., Stanford, CA, USA, Dec. 1999.
[6] S. Jenei, B. K. J. C. Nauwelaers and S. Decoutere, "Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors," in IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp. 77-80, Jan. 2002, doi: 10.1109/4.974547.
[7] Yu Cao, Xuejue Huang, D. Sylvester, Tsu-Jae King and Chenming Hu, "Impact of on-chip interconnect frequency-dependent R(f)L(f) on digital and RF design," 15th Annual IEEE International ASIC/SOC Conference, Rochester, NY, USA, 2002, pp. 438-442, doi: 10.1109/ASIC.2002.1158099.
[8] H. W. Ott, “Noise Reduction Techniques in Electronic Systems,” 2nd ed. New York, NY, USA: Wiley, 1988.
[9] "Common Mode Transient Immunity (CMTI) for UCC2122x Isolated Gate Drivers." Texas Instruments https://www.ti.com/lit/an/slua909/slua909.pdf?ts=1734275527913&ref_url=https%253A%252F%252Fwww.google.com%252F
[10] 林群育, 應用於鎖相迴路之高解析度相位頻率偵測法, 國立交通大學電控工程學系碩士論文, 中華民國一百年七月
[11] E. Sackinger and W. Guggenbuhl, "A versatile building block: the CMOS differential difference amplifier," in IEEE Journal of Solid-State Circuits, vol. 22, no. 2, pp. 287-294, April 1987, doi: 10.1109/JSSC.1987.1052715.
[12] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation,” 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2010.
[13] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局,2006
[14] C. Hogge, "A self correcting clock recovery curcuit," in Journal of Lightwave Technology, vol. 3, no. 6, pp. 1312-1314, December 1985, doi: 10.1109/JLT.1985.1074356.
[15] C. Shekhar and S. Qureshi, "Design and Analysis of Current Starved VCO Targeting SCL 180 nm CMOS Process," 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Hyderabad, India, 2018, pp. 86-89, doi: 10.1109/iSES.2018.00027.
[16] S. Suman, K. G. Sharma and P. K. Ghosh, "Analysis and design of current starved ring VCO," 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 2016, pp. 3222-3227, doi: 10.1109/ICEEOT.2016.7755299.
[17] Altoobaji, A. Hassan, M. Ali, M. Nabavi, Y. Audet, and A. Lakhssassi, “A Fully Integrated 0.6 Gbps Data Communication System for Inductive-Based Digital Isolator with 0.8 ns Propagation Delay and 10^-15 BER,” *Electronics*, vol. 12, no. 3336, pp. 1-16, 2023. doi: 10.3390/electronics12153336.
[18] Z. Xiong, D. Pan, G. Li, and L. Cheng, "A 250Mbps 100kV/μs CMTI On-Chip Double-Isolated Transformer-Based Digital Isolator," in *Proc. of the 2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)*, pp. 156-157, 2022, doi: 10.1109/ICTA56932.2022.9963044.
[19] Y. Ding, C. Lu, L. Song, X. Yu, and W. Qu, "A Fully Integrated, Low-Cost, High Channel Utilization Digital Isolator in Standard CMOS with 50Mbps and 100kV/μs CMTI," in *Proc. of the 2024 Asia Conference on Power and Electrical Engineering (ACPEE)*, pp. 921-925, Mar. 2024, doi: 10.1109/ACPEE60788.2024.10532507.
[20] R. Yun, J. Sun, E. Gaalaas and Baoxing Chen, "A transformer-based digital isolator with 20kVPK surge capability and > 200kV/μS Common Mode Transient Immunity," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 2016, pp. 1-2, doi: 10.1109/VLSIC.2016.7573497.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2025-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明