博碩士論文 112524602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.15.22.62
姓名 吳普托(Cipto Sabdo Prabowo)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 真實情境透過人工智慧 即時影片辨識增強英語口說與寫作
(AI-Enhanced EFL Speaking and Writing through Real-Time Video Recognition in Authentic Contexts)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-18以後開放)
摘要(中) 在當今全球化的世界中,英語能力至關重要,尤其對於以非母語使用者而言,這對於學術成功與職業機會尤為重要。傳統的教學方法往往無法滿足EFL學習者的需求,突顯出在真實情境中提升語言技能的創新工具需求。隨著科技的發展,將人工智慧(AI)整合到語言學習中,因其能夠提供個性化、互動性及即時反饋而受到關注。本研究為探討AI強化的影片識別技術如何幫助學生在真實情境中提升其英語寫作與口說能力。過去相關的研究顯示,將AI應用於教育中能夠提升學生詞彙量、寫作與口說能力。AI工具能針對發音、語法及詞彙提供反饋,但目前關於將AI與即時影片技術結合於真實語言學習中的研究仍然有限。儘管AI工具展現了可觀的成果,但針對即時影片識別技術在提升EFL學習者寫作與口說能力上的影響,仍然缺乏相關研究。本研究透過探討AI強化影片對話(AI-EVC)技術來填補這一空白。本研究介紹了一款名為AI-EVC的行動應用程式,它利用即時影片識別輔助學生進行有意義的對話,提升其寫作及口說練習。該系統還設計了一個即時反饋的聊天機器人,幫助學習者進行對話練習。本研究在印尼一所大學中進行,涉及兩組EFL學生:使用具有影片識別功能的AI-EVC的實驗組(EG)和不具有該功能的對照組(CG)。兩組學生均完成了前測、後測,並且觀察其語言能力變化。研究結果顯示,實驗組在口說與寫作能力上均顯著優於對照組。使用影片識別技術幫助學生在真實情境中運用更複雜的句子結構,並擴展了其詞彙量。AI強化的影片識別技術被證明是提升EFL學生語言技能的有效工具。它提供了更實用且具有吸引力的學習體驗,讓學生能夠與真實情境互動,使語言學習更具意義且實用。
摘要(英) English proficiency is crucial in today’s globalized world, especially for non-native speakers aiming for academic success and job opportunities. Traditional teaching methods often fail to meet the needs of EFL learners, highlighting the need for innovative tools that improve language skills in authentic contexts. With the rise of technology, integrating AI into language learning has gained attention for its ability to provide personalized, interactive, and immediate feedback. This study seeks to explore how AI-enhanced video recognition technology can help students improve their English writing and speaking skills in real-life situations. Previous studies have shown that using AI in education improves vocabulary acquisition, writing, and speaking proficiency. AI-based tools provide feedback on pronunciation, grammar, and vocabulary, but limited studies focus on combining AI with real-time video technology for authentic language learning. Despite the promising outcomes of AI tools, there is a lack of research investigating the effects of real-time video recognition in enhancing EFL learners′ writing and speaking skills in authentic contexts. This study addresses this gap by examining the impact of AI-Enhanced Video Conversation (AI-EVC) technology. This study introduces AI-EVC, a mobile-based application that uses real-time video recognition to help students engage in meaningful conversations, improve their writing, and practice speaking. The system also includes a chatbot that provides immediate feedback on language use. The study involved two groups of EFL students at an Indonesian university: an Experimental Group (EG) using AI-EVC with video recognition and a Control Group (CG) using AI-EVC without it. Both groups completed pre-tests, post-tests, and were observed for changes in their language proficiency. The findings revealed that the EG showed significant improvements in both speaking and writing skills compared to the Control Group. The use of video recognition helped students use more complex sentence structures and expanded their vocabulary in authentic contexts. AI-enhanced video recognition has proven to be an effective tool for improving EFL students′ language skills. It provides a more practical and engaging learning experience by allowing students to interact with real-world scenarios, making language acquisition more relevant and applicable.
關鍵字(中) ★ AI強化影片對話(AI-EVC)
★ 即時影片識別
★ EFL口說與寫作能力
★ 真實學習情境
★ 語言能力提升
關鍵字(英) ★ AI-Enhanced Video Conversation (AI-EVC)
★ Real-time Video Recognition
★ EFL Speaking and Writing Skills
★ Authentic Learning Contexts
★ Language Proficiency Improvement
論文目次 摘要 iii
Abstract iv
Acknowledgements v
List of Contents vi
List of Figures viii
List of Table ix

Chapter 1 Introduction 1
1.1 Research motivation 1
1.2 Purposes 3

Chapter 2 Literature Review 4
2.1 EFL speaking and writing skills: importance and challenges 4
2.2 Technology integration in EFL education 6
2.3 Real-time video recognition: applications and benefits on EFL skills development 7
2.4 Authentic contexts in language learning and contextualization on EFL learning 9
2.5 AI-enhanced EFL speaking and writing 11
2.6 Personalized learning 13

Chapter 3 System Design and Implementation 15
3.1 System infrastructure 15
3.2 System design 16
3.3 Implementation 18
3.3.1 Real-time video recognition 18
3.3.2 Video labeling 19
3.3.3 QAC writing (Questioning, Answering, Clarifying) 20
3.3.4 Speaking Practice 22
3.3.5 Personalized learning activity, learning artifact, and learning achievement portfolio 23

Chapter 4 Methodology 26
4.1 Research framework and research variable 26
4.1.1 Independent variables 27
4.1.2 Control variables 27
4.1.3 Dependent variables 27
4.2 Experiment procedure 30
4.3 Research subject 31
4.4 Research instruments 31
4.5 Learning activity 31
4.6 Data collection and processing 32

Chapter 5 Result and Discussion 33
5.1 Comparison of learning achievements between two groups 33
5.2 Comparisons of learning behaviors between two groups 40
5.3 Correlation analysis of learning behaviors and learning achievement in EG. 43
5.4 Student perceptions of AI-EVC system 46
5.5 Implications and suggestions 52
5.5.1 Integration AI and recognition 52
5.5.2 Authentic video with QAC to stimulate student EFL practice English conversation 53
5.5.3 Learning behavior 54
Chapter 6 Conclusion 56
6.1 Conclusion 56
6.2 Limitations and further study 57

Reference 59
Appendix A: Pre-test 65
Appendix B: Post-test 70
Appendix C: TAM & ARCS Questionnaire 75
Appendix D: Interview Question 76
Appendix E: Documentation 78
參考文獻 Akhter, S., Haidov, R., Rana, A. M., & Qureshi, A. H. (2020). Exploring the significance of speaking skill for EFL learners. PalArch′s Journal of Archaeology of Egypt/Egyptology, 17(9), 6019-6030.
Alamri, H. A., Watson, S., & Watson, W. (2021). Learning technology models that support personalization within blended learning environments in higher education. TechTrends, 65(1), 62-78. doi:https://doi.org/10.1007/s11528-020-00530-3
Albiladi, W. (2019). Exploring the Use of Written Authentic Materials in ESL Reading Classes: Benefits and Challenges. English language teaching, 12(1), 67-77. doi:https://doi.org/10.5539/elt.v12n1p67
Aldossari, S., & Altalhab, S. (2022). Distance Learning during COVID-19: EFL Students′ Engagement and Motivation from Teachers′ Perspective. English Language Teaching, 15(7), 85-109. doi:https://doi.org/10.5539/elt.v15n7p85
Alghasab, M. B., Alfadley, A., & Aladwani, A. M. (2020). Factors Affecting Technology Integration in EFL Classrooms: The Case of Kuwaiti Government Primary Schools. Journal of Education and Learning, 9(4), 10-27. doi:https://doi.org/10.5539/jel.v9n4p10
Alharbi, W. (2023). AI in the foreign language classroom: A pedagogical overview of automated writing assistance tools. Education Research International, 2023(1), 4253331. doi:https://doi.org/10.1155/2023/4253331
Alsmari, N. (2021). The Relationship between Language Proficiency Level and L2 Digital Literacy Self-efficacy: A Study of EFL University Students. International Journal of Arabic-English Studies (IJAES), 21(2). doi:https://doi.org/10.33806/ijaes2000.21.2.10
Ardi, P., & Rianita, E. (2022). Leveraging gamification into EFL grammar class to boost student engagement. Teaching English with Technology, 22(2), 90-114.
Atmojo, A. P. (2021). EFL teachers′ online teacher professional development experiences amidst the COVID-19 pandemic: Practices and perceptions. Englisia: Journal of Language, Education, and Humanities, 9(1), 1-18. doi:https://doi.org/10.22373/ej.v9i1.9127
Azzahra, N., & Amanta, F. (2021). Promoting digital literacy skill for students through improved school curriculum. Policy Brief, No. 11.
Barrot, J. S. (2022). Integrating technology into ESL/EFL writing through Grammarly. Relc Journal, 53(3), 764-768. doi:https://doi.org/10.1177/0033688220966632
Bernacki, M., Greene, M. J., & Lobczowski, N. G. (2021). A systematic review of research on personalized learning. Educational Psychology Review, 33(4), 1675-1715. doi:https://doi.org/10.1007/s10648-021-09615-8
Bhat, I. H. (2024). The Impact of Video-Based Learning on Student Engagement and Motivation. In Innovation in the University 4.0 System based on Smart Technologies (pp. 39-53). Chapman and Hall/CRC. doi:https://doi.org/10.1201/9781003425809-3
Boonmoh, A., Jumpakate, T., & Karpklon, S. (2022). A close look at the use of technology by Thai teachers in secondary EFL classrooms. Computer Assisted Language Learning, 23(1), 78-107.
Bouilheres, F., Le, L. V., McDonald, S., Nkhoma, C., & Jandug-Montera, L. (2020). Defining student learning experience through blended learning. Education and Information Technologies, 25(4), 3049-3069. doi:https://doi.org/10.1007/s10639-020-10100-y
Chen, M. A., & Hwang, G. J. (2022). Effects of experiencing authentic contexts on English speaking performances, anxiety and motivation of EFL students with different cognitive styles. Interactive Learning Environments, 30(9), 1619-1639. doi:https://doi.org/10.1080/10494820.2020.1734626
Chen, M. P., Wang, L. C., Zou, D., Lin, S. Y., Xie, H., & Tsai, C. C. (2022). Effects of captions and English proficiency on learning effectiveness, motivation and attitude in augmented-reality-enhanced theme-based contextualized EFL learning. Computer Assisted Language Learning, 35(3), 381-411. doi:https://doi.org/10.1080/09588221.2019.1704787
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
Evers, K., & Chen. (2022). Effects of an automatic speech recognition system with peer feedback on pronunciation instruction for adults. Computer Assisted Language Learning, 35(8), 1869-1889. doi:https://doi.org/10.1080/09588221.2020.1839504
Fariani, R. I., Junus, K., & Santoso, H. B. (2023). A systematic literature review on personalized learning in the higher education context. Technology, Knowledge and Learning, 28(2), 449-476. doi:https://doi.org/10.1007/s10758-022-09628-4
Hoang, N. T., Han, D. N., & Le, D. H. (2023). Exploring Chatbot AI in improving vocational students′ English pronunciation. AsiaCALL Online Journal, 14(2), 140-155. doi:https://doi.org/10.54855/acoj.231429
Hwang, G. J., & Chang, C. Y. (2023). Facilitating decision-making performances in nursing treatments: a contextual digital game-based flipped learning approach. Interactive Learning Environments, 31(1), 156-171. doi:https://doi.org/10.1080/10494820.2020.1765391
Hwang, W. Y., & Nurtantyana, R. (2022). The integration of multiple recognition technologies and artificial intelligence to facilitate EFL writing in authentic contexts. (pp. 379-383). IEEE. doi:https://doi.org/10.1109/InCIT56086.2022.10067490
Hwang, W. Y., & Nurtantyana, R. (2022). X-education: Education of all things with AI and edge computing—One case study for EFL learning. Sustainability, 14(19), 12533. doi:https://doi.org/10.3390/su141912533
Hwang, W. Y., Guo, B. C., Hoang, A., Chang, C. C., & Wu, N. T. (2022). Facilitating authentic contextual EFL speaking and conversation with smart mechanisms and investigating its influence on learning achievements. Computer Assisted Language Learning, 1-27.
Hwang, W. Y., Nurtantyana, R., & Surjono, H. D. (2023). AI and Recognition Technologies to Facilitate English as Foreign Language Writing for Supporting Personalization and Contextualization in Authentic Contexts. Journal of Educational Computing Research, 61(5), 1008-1035. doi:https://doi.org/10.1177/073563312211372
Imamyartha, D., Wahjuningsih, E., A′yunin, A., Santihastuti, A., Fauzie, D. T., & Andika, E. H. (2022). EFL learners′ engagement and learning motivation in team-based mobile language learning through WhatsApp. Teaching English with Technology, 22(1), 82-103.
Joraboyev, B. O. (2021). Using authentic materials on English lessons. Academic research in educational sciences, 2(2), 1018-1025.
Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence, 2, 100017. doi:https://doi.org/10.1016/j.caeai.2021.100017
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
Kholis, A. (2021). Elsa speak app: automatic speech recognition (ASR) for supplementing English pronunciation skills. Pedagogy: Journal of English Language Teaching, 9(1), 01-14. doi:https://doi.org/10.32332/joelt.v9i1.2723
Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. Relc Journal, 54(2), 537-550. doi:https://doi.org/10.1177/00336882231162868
Kruse, C., Betancourt, J., Ortiz, S., Valdes Luna, S., Bamrah, I., & Segovia, N. (2019). Barriers to the use of mobile health in improving health outcomes in developing countries: systematic review. Journal of medical Internet research, 21(10), e13263. doi:https://doi.org/10.2196/13263
Latupeirissa, D. S., & Sayd, A. I. (2019). Grammatical errors of writing in EFL class. International journal of linguistics, literature and culture, 5(2), 1-12. doi:https://doi.org/10.21744/ijllc.v5n2.605
Lestiyanawati, R. (2020). The strategies and problems faced by Indonesian teachers in conducting e-learning during COVID-19 outbreak. CLLiENT (Culture, Literature, Linguistics, and English Teaching), 2(1), 71-82. doi:https://doi.org/10.32699/cllient.v2i1.1271
Liu, Y. F., Luthfi, M. I., & Hwang, W. Y. (2024). Enhancing Usability and Learner Engagement: A Heuristic Evaluation of the AI-Enhanced Video Drama Maker App. In 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 337-342). Phuket, Thailand: IEEE. doi:https://doi.org/10.1109/JCSSE61278.2024.10613736
Luthfi, M. I., Liu, Y. F., & Hwang, W. Y. (2024). Developing an AI-enhanced Video Drama-Making Learning System to Support EFL Learners in Authentic Context. The 28th Global Chinese Conference on Computers in Education (GCCCE 2024), (pp. 34-37). Chongqing, China. Retrieved from https://www.researchgate.net/publication/381190659
Mahbub, I. S., & Hadina, H. (2021). A SYSTEMATIC OVERVIEW OF ISSUES FOR DEVELOPING EFL LEARNERS′ORAL ENGLISH COMMUNICATION SKILLS. Journal of Language and Education, 7(1 (25)), 229-240. doi:https://doi.org/10.17323/jle.2021.10737
Maier, U., & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification framework and literature review. Computers and Education: Artificial Intelligence, 3, 100080. doi:https://doi.org/10.1016/j.caeai.2022.100080
Martin, F., Chen, Y., Moore, R. L., & Westine, C. D. (2020). Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018. Educational Technology Research and Development, 68(4), 1903-1929. doi:https://doi.org/10.1007/s11423-020-09793-2
Marzuki, Widiati, U., Rusdin, D., Darwin, & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students′ writing: EFL teachers′ perspective. Cogent Education, 10(2), 2236469. doi:https://doi.org/10.1080/2331186X.2023.2236469
Mega, I. R., & Sugiarto, D. (2020). Speaking skill in correlation with English speaking learning habit and self confidence of vocational high school students. Journal of Foreign Language Teaching and Learning, 5(2), 172-187. doi:https://doi.org/10.18196/ftl.5253
Nadeak, B., & Naibaho, L. (2020). VIDEO-BASED LEARNING ON IMPROVING STUDENTS′ LEARNING OUTPUT. PalArch′s Journal of Archaeology of Egypt/Egyptology, 17(2), 44-54.
Namaziandost, E., & Nasri, M. (2019). The impact of social media on EFL learners’ speaking skill: a survey study involving EFL teachers and students. Journal of Applied Linguistics and Language Research, 6(3), 199-215.
Namaziandost, E., Homayouni, M., & Rahmani, P. (2020). The impact of cooperative learning approach on the development of EFL learners′ speaking fluency. Cogent Arts & Humanities, 1780811. doi:https://doi.org/10.1080/23311983.2020.1780811
Nazari, N., Nafissi, Z., Estaji, M., & Marandi, S. S. (2019). Evaluating novice and experienced EFL teachers′ perceived TPACK for their professional development. Cogent Education, 6(1), 1632010. doi:https://doi.org/10.1080/2331186X.2019.1632010
Ngo, T. T., Chen, H. H., & Lai, K. K. (2024). The effectiveness of automatic speech recognition in ESL/EFL pronunciation: A meta-analysis. ReCALL, 36(1), 4-21. doi:https://doi.org/10.1017/S0958344023000113
Pataranutaporn, P., Danry, V., Leong, J., Punpongsanon, P., Novy, D., Maes, P., & Sra, M. (2021). AI-generated characters for supporting personalized learning and well-being. Nature Machine Intelligence, 3(12), 1013-1022. doi:https://doi.org/10.1038/s42256-021-00417-9
Peixoto, B., Bessa, L., Goncalves, G., Bessa, M., & Melo, M. (2023). Teaching EFL with immersive virtual reality technologies: A comparison with the conventional listening method. IEEE Access, 11, pp. 21498-21507. doi:https://doi.org/10.1109/ACCESS.2023.3249578
Peng, H., Ma, S., & Spector, J. M. (2019). Personalized adaptive learning: An emerging pedagogical approach enabled by a smart learning environment. Smart Learning Environments, 6(1), 1-14. doi:https://doi.org/10.1186/s40561-019-0089-y
Pennington, M. C., & Rogerson-Revell, P. (2019). Using technology for pronunciation teaching, learning, and assessment. English Pronunciation Teaching and Research: Contemporary Perspectives, 235-286. doi:https://doi.org/10.1057/978-1-137-47677-7_5
Perry, F. (2021). he use of embedded digital tools to develop English language proficiency in higher education. Journal of Academic Language and Learning, 15(1), 1-12.
Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. Journal of Language and Cultural Education, 7(3), 135-153. doi:https://doi.org/10.2478/jolace-2019-0025
Policy Brief. Suwarto, D., Setiawan, B., & Machmiyah, S. (2022). Developing digital literacy practices in Yogyakarta elementary schools. Electronic Journal of E-Learning, 20(2), pp101-111. doi:https://doi.org/10.34190/ejel.20.2.2602
Rahim, M. N. (2019). The use of blended learning approach in EFL education. International Journal of Engineering and Advanced Technology, 8(5), 1165-1168. doi:https://doi.org/10.35940/ijeat.E1163.0585C19
Rahmadini, F., & Rahmadhani, S. (2024). The Effectiveness of FluentU Application on Students’ Vocabulary Mastery. Journal of English Language Teaching, 13(1), 241-251. doi:https://doi.org/10.24036/jelt.v13i1.127422
Rao, P. S. (2019). The importance of speaking skills in English classrooms. Alford Council of International English & Literature Journal (ACIELJ), 2(2), 6-18.
Rao, P. S. (2019). The significance of writing skills in ell environment. ACADEMICIA: An International Multidisciplinary Research Journal, 9(3), 5-17. doi:https://doi.org/10.5958/2249-7137.2019.00035.1
Regan, P. M., & Jesse, J. (2019). Ethical challenges of edtech, big data and personalized learning: Twenty-first-century student sorting and tracking. Ethics and Information Technology, 21, 167-179. doi:https://doi.org/10.1007/s10676-018-9492-2
Rizqullah, R., & Siregar, J. K. (2021). The Determinant of Financial Performance Based on Good Corporate Governance and Company Size in the Basic Industrial and Chemical Sectors 2015-2019. Proceedings of the First International Conference on Science, Technology, Engineering and Industrial Revolution (ICSTEIR 2020). 536, pp. 105-111. Atlantis Press. doi:https://doi.org/10.2991/assehr.k.210312.017
Rose, R. (2020). Real-time feedback on acoustic measures of second language speech fluency. Speech Prosody 2020, (pp. 774-778). doi:https://doi.org/10.21437/SpeechProsody.2020-158
Septiyanti, N. D., Luthfi, M. I., & Darmawansah, D. (2024). Effect of Chatbot-Assisted Learning on Students’ Learning Motivation and Its Pedagogical Approaches. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 10(1), 69-77. doi:https://doi.org/10.23917/khif.v10i1.4246
Seraj, P. M., & Hadina, H. (2021). A systematic overview of issues for developing EFL learners′ oral English communication skills. Journal of Language and Education, 7(1), 229-240. doi:https://doi.org/10.17323/jle.2021.10737
Shadiev, R., & Yang, M. (2020). Review of studies on technology-enhanced language learning and teaching. Sustainability, 12(2), 524. doi:https://doi.org/10.3390/su12020524
Shadiev, R., & Yu, J. (2024). Review of research on computer-assisted language learning with a focus on intercultural education. Computer Assisted Language Learning, 37(4), 841-871. doi:https://doi.org/10.1080/09588221.2022.2056616
Shadiev, R., Wu, T., & Huang, Y. (2020). Using image-to-text recognition technology to facilitate vocabulary acquisition in authentic contexts. ReCALL, 32(2), 195-212. doi:https://doi.org/10.1017/S0958344020000038
Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms. Smart Learning Environments, 7(1), 33. doi:https://doi.org/10.1186/s40561-020-00140-9
Solidjonov, D. (2024). ARTIFICIAL INTELLIGENCE (AI)-BASED MOBILE LEARNING IN ELT FOR EFL LEARNERS: THE IMPLEMENTATION AND LEARNERS′ ATTITUDES. Kokand University Research Base, 128-133.
Suban, T. S. (2021). Teaching speaking: activities to promote speaking skills in EFL classrooms. Lectio: Journal of Language and Language Teaching, 1(1), 41-50.
Sun, W. (2023). The impact of automatic speech recognition technology on second language pronunciation and speaking skills of EFL learners: a mixed methods investigation. Frontiers in Psychology, 14, 1210187. doi:https://doi.org/10.3389/fpsyg.2023.1210187
Tai, T., Chen, H., & Todd, G. (2022). The impact of a virtual reality app on adolescent EFL learners’ vocabulary learning. Computer Assisted Language Learning, 35(4), 892-917. doi:https://doi.org/10.1080/09588221.2020.1752735
Teng, L. S., & Zhang, L. J. (2020). Empowering learners in the second/foreign language classroom: Can self-regulated learning strategies-based writing instruction make a difference? Journal of Second Language Writing, 48, 100701. doi:https://doi.org/10.1016/j.jslw.2019.100701
Teng, M. F., Wang, C., & Zhang, L. J. (2022). Assessing self-regulatory writing strategies and their predictive effects on young EFL learners′ writing performance. Assessing Writing, 51, 100573. doi:https://doi.org/10.1016/j.asw.2021.100573
Teng, Y., & Wang, X. (2021). The effect of two educational technology tools on student engagement in Chinese EFL courses. International Journal of Educational Technology in Higher Education, 18(1), 27. doi:https://doi.org/10.1186/s41239-021-00263-0
Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing personalized education: A dynamic framework. Educational Psychology Review, 33, 863-882. doi:https://doi.org/10.1007/s10648-020-09570-w
Toba, R., Noor, W. N., & Sanu, L. O. (2019). The Current Issues of Indonesian EFL Students′ Writing Skills: Ability, Problem, and Reason in Writing Comparison and Contrast Essay. Dinamika Ilmu, 19(1), 57-73. doi:https://doi.org/10.21093/di.v19i1.1506
Wulandari, M. (2019). Improving EFL learners speaking proficiency through Instagram vlog. LLT Journal: A Journal on Language and Language Teaching, 22(1), 111-125. doi:https://doi.org/10.24071/llt.v22i1.1796
Xiao, W., & Park, M. (2021). Using automatic speech recognition to facilitate English pronunciation assessment and learning in an EFL context: pronunciation error diagnosis and pedagogical implications. International Journal of Computer-Assisted Language Learning and Teaching (IJCALLT), 11(3), 74-91. doi:https://doi.org/10.4018/IJCALLT.2021070105
Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review. Computers & Education, 140, 103599. doi:https://doi.org/10.1016/j.compedu.2019.103599
Zhang, L., Basham, J. D., & Yang, S. (2020). Understanding the implementation of personalized learning: A research synthesis. Educational Research Review, 31, 100339. doi:https://doi.org/10.1016/j.edurev.2020.100339
Zhao, X. (2023). Leveraging artificial intelligence (AI) technology for English writing: Introducing Wordtune as a digital writing assistant for EFL writers. RELC Journal, 54(3), 890-894. doi:https://doi.org/10.1177/00336882221094089
Zhou, P. (2024). Real time feedback and E-learning intelligent entertainment experience in computer English communication based on deep learning. Entertainment Computing, 100752. doi:https://doi.org/10.1016/j.entcom.2024.100752
指導教授 黃武元(Wu-Yuin Hwang Fatchul Arifin) 審核日期 2024-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明