博碩士論文 111524008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.59.212.110
姓名 柯炘德(Xin-De Ke)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 結合自我調節及共同調節學習分析儀表板於Python程式教育之研究
(Combining Self-Regulated and Co-Regulated Learning Analysis Dashboards for Python Programming Education)
相關論文
★ 基於間隔效應與知識追蹤之適性化學習演算法系統設計與應用:以多益英語學習為例★ 結合社會調節學習平台與教中學課程設計以增進大學生視覺化資料分析能力與調節學習
★ 以深度知識追蹤模型應用於程式學習系統★ 結合聊天機器人與推薦系統之閱讀學伴應用於國小閱讀
★ 視覺化閱讀歷程系統於國小身教式持續安靜閱讀之應用★ 基於文本型程式編寫紀錄之自我調節儀表板於程式設計學習成效探究
★ 結合重新設計之翻轉教室模型與視覺化分析系統對於程式設計學習之影響★ 結合視覺化儀表板與合作腳本輔助VR共創活動以探討國小學童之學習行為、情感與認知參與
★ 結合視覺化儀表板之專案管理平台於在職學生專案能力與資料分析學習之影響★ 專題導向學習與調節學習儀表板應用於資料視覺化在職課程
★ 整合預測分析與學習儀表板以提升準時畢業率: 以印尼高等教育為例★ 結合生成式人工智慧之探究式學習同伴系統以增進研究生資料視覺化素養能力
★ 結合生成式人工智慧與4F動態回顧循環理論於國小閱讀學習同伴系統的應用與成效評估★ 應用指數平滑法實現短期學習成效預測與學習歷程儀表板系統建置
★ 應用生成式模型輔助問題生成學習系統於國小社會 課程之研究★ 基於自動問題生成與知識追蹤之適性化學習系統設計與應用:以 Python 程式設計學習為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 學習程式語言涉及許多複雜概念,需要學生持續練習並調節其學習。為了應對這些挑戰,本研究基於自我調節學習理論及共同調節學習理論設計了兩個學習分析儀表板。自我調節學習儀表板主要展示學生的個人學習狀態,並根據學生當前知識點掌握情況預測學生的學習透過GenAI提供適性化學習建議。共同調節學習儀表板展示小組成員的學習狀態,透過排行榜展示學生與同儕之間的差異,並透過學習歷程記錄追蹤學習過程。
本研究的研究對象為台灣北部一門為期17週的Python程式語言課程中的38名研究生。透過實驗前後的Python能力測驗和線上自我調節學習問卷及自我導向學習問卷,評估學生的能力,學生可依照自由意願使用本學習系統進行題目練習、觀看儀表板,並且隨時調整學習目標。系統日誌記錄蒐集了學生滑鼠點擊和瀏覽行為。實驗結束後透過科技接受模型、學習分析評價框架和開放式問題收集了學生對於系統及學習分析儀表板的回饋。
研究發現,使用學習系統一學期後,學生的學習成效顯著提升,自我導向學習能力中的學習動機和自我監控構面均顯著提高,整體自我導向學習能力也顯著提升。學生對系統的感知易用性給予高分,並提出了相關建議和想法。然而,自我調節學習能力在所有構面及整體上未達顯著水準。結果顯示,學習系統及學習分析儀表板能促進學生學習,使他們對學習程式設計的態度更加積極,並能更有效管理學習過程,學生在學習成效、自我導向學習能力、學習動機和自我監控能力上均有顯著進步。
摘要(英) Learning programming languages involves many complex concepts, requiring students to practice continuously and regulate their learning. To address these challenges, this study designed two learning analytics dashboards based on self-regulated learning theory and co-regulated learning theory. The self-regulated learning dashboard primarily displays the student′s personal learning status and provides adaptive learning recommendations through GenAI based on the student′s current knowledge mastery. The co-regulated learning dashboard shows the learning status of group members, highlighting differences between students and their peers through leaderboards and tracking the learning process via learning history records.
The study′s participants were 38 graduate students enrolled in a 17-week Python programming course in northern Taiwan. The study evaluated the students′ abilities through pre- and post-experimental Python proficiency tests and online self-regulated learning and self-directed learning questionnaires. Students could voluntarily use the learning system for practice, view the dashboards, and adjust learning goals at any time. The system logs collected data on students′ mouse clicks and browsing behaviors. After the experiment, feedback on the system and learning analytics dashboards was gathered using the Technology Acceptance Model, the Learning Analytics Evaluation Framework, and open-ended questions.
The study found that after using the learning system for a semester, students′ learning outcomes significantly improved. There were significant increases in the learning motivation and self-monitoring aspects of self-directed learning ability, and overall self-directed learning ability also significantly improved. Students rated the system′s perceived ease of use highly and provided relevant suggestions and ideas. However, the self-regulated learning ability did not reach significant levels in all dimensions and overall. The results indicate that the learning system and learning analytics dashboards can enhance students′ learning, making their attitudes toward learning programming more positive and enabling them to manage the learning process more effectively. Significant improvements were observed in learning outcomes, self-directed learning ability, learning motivation, and self-monitoring ability.
關鍵字(中) ★ 學習系統
★ 程式教育
★ 自我導向學習
★ 調節學習
★ 學習分析儀表板
關鍵字(英) ★ learning system
★ programming education
★ self-directed learning
★ regulated learning
★ learning analysis dashboards
論文目次 中文摘要 i
Abstract ii
誌謝 iv
圖目錄 viii
表目錄 ix
一、緒論 1
1-1研究背景與動機 1
1-2研究目的 2
1-3研究問題 2
1-4名詞釋義 3
二、文獻探討 5
2-1程式設計學習 5
2-1-1學習分析在程式設計學習中的相關研究 5
2-2調節學習 6
2-2-1自我調節學習 6
2-2-2社會共享調節學習 8
2-2-3共同調節學習 8
2-2-4人類與人工智慧混合調節 9
2-2-5調節學習在程式設計學習中的相關研究 10
2-3自我導向學習 10
2-3-1自我導向學習 10
2-3-2間隔效應與精熟理論 11
2-4學習分析 13
2-4-1學習分析 13
2-4-2開放學生模型 14
2-4-3學習分析儀表板 14
2-4-4學習分析儀表板在教育上的相關研究 15
三、研究方法 17
3-1研究對象 17
3-2實驗流程 17
3-3研究工具 18
3-3-1 Python能力測驗及練習 19
3-3-2線上自我調節學習問卷 19
3-3-3自我導向學習問卷 20
3-3-4科技接受模型 20
3-3-5學習分析評價框架 21
3-3-6開放式問卷 21
3-3-7系統日誌 21
3-4資料分析 22
3-4-1問卷工具信度 24
3-5學習表現分群 26
四、系統設計與實作 27
4-1 Python線上學習管理系統 27
4-1-1目標設定 28
4-1-2練習系統 30
4-1-3測驗系統 30
4-2學習分析儀表板 31
4-2-1自我調節學習儀表板 31
4-2-2共同調節學習儀表板 36
五、研究結果 39
5-1 Python能力測驗 39
5-1-1 Python學習表現變化 39
5-2自我調節學習能力問卷 39
5-2-1自我調節學習能力變化 42
5-2-2學習系統對高低學習表現學生的自我調節學習能力影響 43
5-3自我導向學習問卷 44
5-3-1自我導向學習變化 46
5-3-2學習系統對高低學習表現學生的自我導向學習能力影響 47
5-4科技接受模型 48
5-5學習分析評價框架 49
5-6儀表板訪問日誌分析 50
5-6-1儀表板訪問日誌統計 50
5-6-2不同學習表現組的儀表板訪問行為差異 51
5-7視覺化瀏覽行為日誌分析 51
5-7-1視覺化瀏覽行為日誌統計 52
5-7-2不同學習表現組的視覺化瀏覽行為差異 52
5-7-3視覺化瀏覽行為與問卷量表間的關係 53
5-8視覺化點擊行為日誌分析 55
5-8-1視覺化點擊行為日誌統計 55
5-8-2不同學習表現組的視覺化點擊行為差異 56
5-8-3視覺化點擊行為與問卷量表間的關係 57
5-9開放式問卷結果 59
5-9-1 大多數的學生認為CLD最能提升學習成效 59
5-9-2 過半的學生較喜歡使用CLD 60
5-9-3 大多數學生喜歡使用CLD,且學習排行榜和Python能力雷達圖最受歡迎 62
5-9-4學生使用系統的四大原因:考試準備、了解自身、自我提升、易用性 63
5-9-5學生對系統的建議:增加題目、改進介面、簡化圖表 64
5-10統整學生對儀表板的看法 64
六、討論 66
6-1不同儀表板訪問行為學生之差異 66
6-2自我導向學習能力提升主因 68
6-2-1自我導向學習與自我調節學習能力 68
6-3自我導向學習能力不同之分群比較 69
6-3-1自我導向學習能力不同之視覺化點擊行為差異 70
6-3-2自我導向學習能力不同之學習表現差異 71
6-4學生偏好使用的儀表板類型及對系?的看法 72
6-5相關研究的比較 75
七、結論 76
7-1本研究所開發之學習系統對學生程式學習之影響 76
7-1-1學生的學習成效顯著提升 76
7-1-2學生的自我調節學習能力未有顯著提升 76
7-1-3學生的自我導向學習能力顯著提升 76
7-2學生對本研究所開發之學習分析儀表板之看法 76
7-2-1學生的對儀表板的感知易用性、感知有用性評價 76
7-2-2學生認為CLD對自身學習成效影響最大 77
7-2-3學生最喜歡使用CLD並且最喜歡CLD中的學習排行榜 77
7-3學生使用系統之使用行為及相關分析 77
7-3-1學生最常使用CLD並且最常瀏覽學習排行榜視覺化圖表 77
7-3-2不同學習表現組的學生在使用視覺化圖表的點擊行為並無顯著不同 78
7-3-3不同自我導向學習能力的學生在使用視覺化圖表的點擊行為並無不同 78
7-4研究限制 78
7-5未來展望 79
參考文獻 80
附件一、知情同意書(中文) 90
附件二、知情同意書(英文) 92
附件三、Python能力測驗(前測) 94
附件四、Python能力測驗(後測) 99
附件五、線上自我調節學習問卷 104
附件六、自我導向學習問卷 106
附件七、科技接受模型問卷 107
附件八、學習分析評價框架問卷 108
附件九、開放式問卷 109
參考文獻 中文文獻
中華民國教育部(2022)。中小學數位教學指引1.0版
外文文獻
Abdi, S., Khosravi, H., Sadiq, S., & Gasevic, D. (2020, March). Complementing educational recommender systems with open learner models. Proceedings of the tenth international conference on learning analytics & knowledge, Frankfurt Germany.
Abreu, P. H., Silva, D. C., & Gomes, A. (2018). Multiple-choice questions in programming courses: Can we use them and are students motivated by them? ACM Transactions on Computing Education (TOCE), 19(1), 1-16. https://doi.org/10.1145/3243137
Aguilar, S. J., Karabenick, S. A., Teasley, S. D., & Baek, C. (2021). Associations between learning analytics dashboard exposure and motivation and self-regulated learning. Computers & Education, 162, 104085. https://doi.org/10.1016/j.compedu.2020.104085
Aivaz, K. A., & Teodorescu, D. (2022). College students’ distractions from learning caused by multitasking in online vs. face-to-face classes: a case study at a Public University in Romania. International journal of environmental research and public health, 19(18), 11188. https://doi.org/10.3390/ijerph191811188
Alhazbi, S., & Hassan, M. (2013, May). Fostering self-regulated learning in introductory computer programming course. 18th Annual Western Canada Conference on Computing Education, North, Vancouver, BC, Canada.
Axelsen, M., Redmond, P., Heinrich, E., & Henderson, M. (2020). The evolving field of learning analytics research in higher education: From data analysis to theory generation, an agenda for future research. Australasian Journal of Educational Technology, 36(2), 1-7. https://doi.org/10.14742/ajet.6266
Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreign language vocabulary and the spacing effect. Psychological Science, 4(5), 316-321. https://doi.org/10.1111/j.1467-9280.1993.tb00571.x
Baradwaj, B. K., & Pal, S. (2012). Mining educational data to analyze students′ performance. arXiv preprint arXiv:1201.3417. https://doi.org/10.48550/arXiv.1201.3417
Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S.-L. (2009). Measuring self-regulation in online and blended learning environments. The internet and higher education, 12(1), 1-6. https://doi.org/10.1016/j.iheduc.2008.10.005
Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: some thoughts and observations. ACM SIGCSE Bulletin, 37(2), 103-106. https://doi.org/10.1145/1083431.1083474
Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGCSE Bulletin, 39(2), 32-36. https://doi.org/10.1145/1272848.1272879
Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning on introductory programming performance. In Proceedings of the first international workshop on Computing education research (pp. 81-86). Publication History. https://doi.org/10.1145/1089786.1089794
Block, J. H., & Burns, R. B. (1976). Mastery learning. Review of research in education, 4, 3-49. https://doi.org/10.2307/1167112
Bloom, B. S. (1968). Learning for Mastery. Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Evaluation comment, 1(2), n2. https://eric.ed.gov/?id=ED053419
Bull, S., & Kay, J. (2010). Open learner models. In Advances in intelligent tutoring systems (pp. 301-322). Springer. https://doi.org/10.1007/978-3-642-14363-2_15
Bull, S., Quigley, S., & Mabbott, A. (2006). Computer-based formative assessment to promote reflection and learner autonomy. engineering education, 1(1), 8-18. https://doi.org/10.11120/ened.2006.01010008
Caspari-Sadeghi, S. (2022). Applying learning analytics in online environments: Measuring learners’ engagement unobtrusively. In Frontiers in Education (Vol. 7, pp. 840947). Frontiers Media SA. https://doi.org/10.3389/feduc.2022.840947
Chen, L., Geng, X., Lu, M., Shimada, A., & Yamada, M. (2023). How Students Use Learning Analytics Dashboards in Higher Education: A Learning Performance Perspective. SAGE Open, 13(3), 21582440231192151. https://doi.org/10.1177/21582440231192151
Chen, Z.-H., Chou, C.-Y., Deng, Y.-C., & Chan, T.-W. (2007). Active open learner models as animal companions: Motivating children to learn through interacting with My-Pet and Our-Pet. International Journal of Artificial Intelligence in Education, 17(2), 145-167. https://content.iospress.com/articles/international-journal-of-artificial-intelligence-in-education/jai17-2-04
Cheng, G., Zou, D., Xie, H., & Wang, F. L. (2024). Exploring differences in self-regulated learning strategy use between high-and low-performing students in introductory programming: An analysis of eye-tracking and retrospective think-aloud data from program comprehension. Computers & Education, 208, 104948. https://doi.org/10.1016/j.compedu.2023.104948
Choffin, B., Popineau, F., Bourda, Y., & Vie, J.-J. (2019). DAS3H: modeling student learning and forgetting for optimally scheduling distributed practice of skills. arXiv preprint arXiv:1905.06873. https://doi.org/10.48550/arXiv.1905.06873
Chou, C.-Y., Lai, K. R., Chao, P.-Y., Lan, C. H., & Chen, T.-H. (2015). Negotiation based adaptive learning sequences: Combining adaptivity and adaptability. Computers & Education, 88, 215-226. https://doi.org/10.1016/j.compedu.2015.05.007
Chou, C.-Y., Tseng, S.-F., Chih, W.-C., Chen, Z.-H., Chao, P.-Y., Lai, K. R., Chan, C.-L., Yu, L.-C., & Lin, Y.-L. (2015). Open student models of core competencies at the curriculum level: Using learning analytics for student reflection. IEEE Transactions on Emerging Topics in Computing, 5(1), 32-44. https://doi.org/10.1109/TETC.2015.2501805
Chou, C.-Y., & Zou, N.-B. (2020). An analysis of internal and external feedback in self-regulated learning activities mediated by self-regulated learning tools and open learner models. International Journal of Educational Technology in Higher Education, 17(1), 1-27.
Chou, C. Y., Chih, W. C., Tseng, S. F., & Chen, Z. H. (2019, November). Simulatable open learner models of core competencies for setting goals for course performance. 27th International Conference on Computers in Education, ICCE 2019, Kenting Taiwan.
Clark, D. (2004). Testing programming skills with multiple choice questions. Informatics in Education-An International Journal, 3(2), 161-178. https://www.ceeol.com/search/article-detail?id=252264
Clow, D. (2012, April). The learning analytics cycle: closing the loop effectively. Proceedings of the 2nd international conference on learning analytics and knowledge, Vancouver British Columbia Canada.
Cobos, R. (2023). Self-Regulated Learning and Active Feedback of MOOC Learners Supported by the Intervention Strategy of a Learning Analytics System. Electronics, 12(15), 3368. https://doi.org/10.3390/electronics12153368
Coelho, R. C., Marques, M. F., & de Oliveira, T. (2023). Mobile Learning Tools to Support in Teaching Programming Logic and Design: A Systematic Literature Review. Informatics in Education, 22(4), 589-612. https://doi.org/10.15388/infedu.2023.24
Coffrin, C., Corrin, L., De Barba, P., & Kennedy, G. (2014, March). Visualizing patterns of student engagement and performance in MOOCs. Proceedings of the fourth international conference on learning analytics and knowledge, Indianapolis Indiana USA.
Cropper, A. (2020, February). Forgetting to learn logic programs. Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA.
Dabbagh, N., & Kitsantas, A. (2012). Personal Learning Environments, social media, and self-regulated learning: A natural formula for connecting formal and informal learning. The internet and higher education, 15(1), 3-8. https://doi.org/10.1016/j.iheduc.2011.06.002
Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. https://doi.org/10.1111/jcal.12135
Dyckhoff, A. L., Zielke, D., Bultmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Journal of Educational Technology & Society, 15(3), 58-76. https://www.jstor.org/stable/jeductechsoci.15.3.58
Ebbinghaus, H. (1885). Uber das gedachtnis: untersuchungen zur experimentellen psychologie. Duncker & Humblot.
Few, S. (2006). Information dashboard design: The effective visual communication of data. O′Reilly Media, Inc.
Fu, X., Shimada, A., Ogata, H., Taniguchi, Y., & Suehiro, D. (2017). Real-time learning analytics for C programming language courses. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 280-288). https://doi.org/10.1145/3027385.3027407
Garcia Botero, G., Questier, F., & Zhu, C. (2019). Self-directed language learning in a mobile-assisted, out-of-class context: do students walk the talk? Computer Assisted Language Learning, 32(1-2), 71-97. https://doi.org/10.1080/09588221.2018.1485707
Garrison, D. R. (1997). Self-directed learning: Toward a comprehensive model. Adult education quarterly, 48(1), 18-33. https://doi.org/10.1177/074171369704800103
Ga?evi?, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59, 64-71. https://doi.org/10.1007/s11528-014-0822-x
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
Govaerts, S., Verbert, K., Duval, E., & Pardo, A. (2012). The student activity meter for awareness and self-reflection. In CHI′12 Extended Abstracts on Human Factors in Computing Systems (pp. 869-884).
Hadwin, A. F., Bakhtiar, A., & Miller, M. (2018). Challenges in online collaboration: Effects of scripting shared task perceptions. International Journal of Computer-Supported Collaborative Learning, 13, 301-329. https://doi.org/10.1007/s11412-018-9279-9
Hadwin, A. F., Jarvela, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. Handbook of self-regulation of learning and performance, 30, 65-84.
Hirankerd, K., & Kittisunthonphisarn, N. (2020). E-learning management system based on reality technology with AI. International Journal of Information and Education Technology, 10(4), 259-264. https://doi.org/10.18178/ijiet.2020.10.4.1373
Hwang, G.-J., Wang, S.-Y., & Lai, C.-L. (2021). Effects of a social regulation-based online learning framework on students’ learning achievements and behaviors in mathematics. Computers & Education, 160, 104031. https://doi.org/10.1016/j.compedu.2020.104031
Iskrenovic-Momcilovic, O. (2018). Learning a programming language. International Journal of Electrical Engineering Education, 55(4), 324-333. https://doi.org/10.1177/0020720918773975
Jarvela, S., Hadwin, A., Malmberg, J., & Miller, M. (2018). Contemporary perspectives of regulated learning in collaboration. International handbook of the learning sciences, 127-136.
Jarvela, S., Jarvenoja, H., & Veermans, M. (2008). Understanding the dynamics of motivation in socially shared learning. International Journal of Educational Research, 47(2), 122-135. https://doi.org/10.1016/j.ijer.2007.11.012
Jarvela, S., Kirschner, P. A., Panadero, E., Malmberg, J., Phielix, C., Jaspers, J., Koivuniemi, M., & Jarvenoja, H. (2015). Enhancing socially shared regulation in collaborative learning groups: Designing for CSCL regulation tools. Educational Technology Research and Development, 63, 125-142. https://doi.org/10.1007/s11423-014-9358-1
Jeon, I., & Song, K.-S. (2019, February). The Effect of learning analytics system towards learner′s computational thinking capabilities. Proceedings of the 2019 11th International Conference on Computer and Automation Engineering, Perth WN Australia.
Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness is not enough: Pitfalls of learning analytics dashboards in the educational practice. In Data Driven Approaches in Digital Education: 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12–15, 2017, Proceedings 12 (pp. 82-96). Springer International Publishing. https://doi.org/10.1007/978-3-319-66610-5_7
Kinnunen, P., & Malmi, L. (2006, September). Why students drop out CS1 course? Proceedings of the second international workshop on Computing education research, Canterbury United Kingdom.
Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers. https://eric.ed.gov/?id=ED114653
Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56. https://doi.org/10.1186/s41239-023-00426-1
Lai, C.-L., & Hwang, G.-J. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Computers & Education, 100, 126-140. https://doi.org/10.1016/j.compedu.2016.05.006
Lai, C.-L., & Hwang, G.-J. (2023). Strategies for enhancing self-regulation in e-learning: a review of selected journal publications from 2010 to 2020. Interactive learning environments, 31(6), 3757-3779. https://doi.org/10.1080/10494820.2021.1943455
Lai, C.-L., Hwang, G.-J., & Tu, Y.-H. (2018). The effects of computer-supported self-regulation in science inquiry on learning outcomes, learning processes, and self-efficacy. Educational Technology Research and Development, 66, 863-892. https://doi.org/10.1007/s11423-018-9585-y
Lasfeto, D. B., & Ulfa, S. (2023). Modeling of online learning strategies based on fuzzy expert systems and self-directed learning readiness: the effect on learning outcomes. Journal of Educational Computing Research, 60(8), 2081-2104. https://doi.org/10.1177/07356331221094249
Li, H., Majumdar, R., Chen, M.-R. A., & Ogata, H. (2021). Goal-oriented active learning (GOAL) system to promote reading engagement, self-directed learning behavior, and motivation in extensive reading. Computers & Education, 171, 104239. https://doi.org/10.1016/j.compedu.2021.104239
Li, W., Liu, C. Y., & Tseng, J. C. (2024). Development of a metacognitive regulation?based collaborative programming system and its effects on students′ learning achievements, computational thinking tendency and group metacognition. British Journal of Educational Technology, 55(1), 318-339. https://doi.org/10.1111/bjet.13358
Linan, L. C., & Perez, A. A. J. (2015). Educational Data Mining and Learning Analytics: differences, similarities, and time evolution. RUSC. Universities and Knowledge Society Journal, 12(3), 98-112. http://dx.doi.org/10.7238/rusc.v12i3.2515
Long, Y., & Aleven, V. (2017). Enhancing learning outcomes through self-regulated learning support with an open learner model. User Modeling and User-Adapted Interaction, 27, 55-88. https://doi.org/10.1007/s11257-016-9186-6
Lu, H., & Wang, Y. (2022). The effects of different interventions on self-regulated learning of pre-service teachers in a blended academic course. Computers & Education, 180, 104444. https://doi.org/10.1016/j.compedu.2022.104444
Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S. J. (2018). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive learning environments, 78-92. https://doi.org/10.1080/10494820.2016.1278391
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
Ma, G. (2020). The effectiveness of synchronous online flipped learning in college EFL reading course during the COVID-19 epidemic. https://doi.org/10.21203/rs.3.rs-84578/v1
Makhno, K., Kireeva, N., & Shurygin, V. (2022). The impact of online learning technology on self-regulation and student success. Research in Learning Technology, 30. https://doi.org/10.25304/rlt.v30.2802
Marques Puig, J. M., Daradoumis, T., Arguedas, M., & Calvet Linan, L. (2022). Using a distributed systems laboratory to facilitate students′ cognitive, metacognitive and critical thinking strategy use. Journal of Computer Assisted Learning, 38(1), 209-222. https://doi.org/10.1111/jcal.12605
Matcha, W., Ga?evi?, D., & Pardo, A. (2019). A systematic review of empirical studies on learning analytics dashboards: A self-regulated learning perspective. IEEE transactions on learning technologies, 13(2), 226-245. https://doi.org/10.1109/TLT.2019.2916802
McCaslin, M., & Hickey, D. T. (2001). Educational psychology, social constructivism, and educational practice: A case of emergent identity. Educational psychologist, 36(2), 133-140. https://doi.org/10.1207/S15326985EP3602_8
Miao, Y. (2008, September). Mobile learning against forgetting. 2008 The Second International Conference on Next Generation Mobile Applications, Services, and Technologies, Cardiff, UK.
Molenaar, I. (2022). The concept of hybrid human-AI regulation: Exemplifying how to support young learners’ self-regulated learning. Computers and Education: Artificial Intelligence, 3, 100070. https://doi.org/10.1016/j.caeai.2022.100070
Molenaar, I., Horvers, A., Dijkstra, R., & Baker, R. S. (2020, March ). Personalized visualizations to promote young learners′ SRL: The learning path app. Proceedings of the tenth international conference on learning analytics & knowledge, Frankfurt Germany.
Munawar, S., Toor, S. K., Aslam, M., & Hamid, M. (2018). Move to smart learning environment: Exploratory research of challenges in computer laboratory and design intelligent virtual laboratory for eLearning technology. EURASIA Journal of Mathematics, Science and Technology Education, 14(5), 1645-1662. https://doi.org/10.29333/ejmste/85036
Pak, J., Lee, J., & Lee, M. (2022). Developing a Learning Data Collection Platform for Learning Analytics in Online Education. Applied Sciences, 12(11), 5412. https://doi.org/10.3390/app12115412
Palaniappan, K., & Noor, N. M. (2022). Gamification strategy to support self-directed learning in an online learning environment. International Journal of Emerging Technologies in Learning (iJET), 17(3), 104-116. https://doi.org/10.3991/ijet.v17i03.27489
Park, Y., & Jo, I.-H. (2015). Development of the learning analytics dashboard to support students’ learning performance. Journal of Universal Computer Science, 21(1), 110. https://dspace.ewha.ac.kr/handle/2015.oak/230480
Pedrosa, D., Cravino, J., Morgado, L., & Barreira, C. (2016). Self-regulated learning in computer programming: strategies students adopted during an assignment. In Immersive Learning Research Network: Second International Conference, iLRN 2016 Santa Barbara, June 27–July 1, 2016 Proceedings 2 (pp. 87-101). Springer. https://doi.org/10.1007/978-3-319-41769-1_7
Podgorelec, V., & Kuhar, S. (2011). Taking advantage of education data: Advanced data analysis and reporting in virtual learning environments. Elektronika ir Elektrotechnika, 114(8), 111-116. https://doi.org/10.5755/j01.eee.114.8.708
Ramirez, G. (2017). Motivated forgetting in early mathematics: A proof-of-concept study. Frontiers in Psychology, 8, 296996. https://doi.org/10.3389/fpsyg.2017.02087
Roediger III, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in cognitive sciences, 15(1), 20-27.
Roediger III, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249-255. https://doi.org/10.1111/j.1467-9280.2006.01693.x
Scheffel, M., Drachsler, H., Toisoul, C., Ternier, S., & Specht, M. (2017, September). The proof of the pudding: Examining validity and reliability of the evaluation framework for learning analytics. Data Driven Approaches in Digital Education: 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12–15, 2017, Proceedings 12, Tallinn, Estonia.
Seibert Hanson, A. E., & Brown, C. M. (2020). Enhancing L2 learning through a mobile assisted spaced-repetition tool: an effective but bitter pill? Computer Assisted Language Learning, 33(1-2), 133-155. https://doi.org/10.1080/09588221.2018.1552975
Shail, M. S. (2019). Using micro-learning on mobile applications to increase knowledge retention and work performance: a review of literature. Cureus, 11(8). https://doi.org/10.7759/cureus.5307
Shea, P., & Bidjerano, T. (2010). Learning presence: Towards a theory of self-efficacy, self-regulation, and the development of a communities of inquiry in online and blended learning environments. Computers & Education, 55(4), 1721-1731. https://doi.org/10.1016/j.compedu.2010.07.017
Shen, W.-q., Chen, H.-l., & Hu, Y. (2014). The validity and reliability of the self-directed learning instrument (SDLI) in mainland Chinese nursing students. BMC medical education, 14(1), 1-7.
Sobel, H. S., Cepeda, N. J., & Kapler, I. V. (2011). Spacing effects in real?world classroom vocabulary learning. Applied Cognitive Psychology, 25(5), 763-767. https://doi.org/10.1002/acp.1747
Song, D., Hong, H., & Oh, E. Y. (2021). Applying computational analysis of novice learners′ computer programming patterns to reveal self-regulated learning, computational thinking, and learning performance. Computers in Human Behavior, 120, 106746. https://doi.org/10.1016/j.chb.2021.106746
Song, L., & Hill, J. R. (2007). A conceptual model for understanding self-directed learning in online environments. Journal of interactive online learning, 6(1), 27-42. https://www.ncolr.org/issues/jiol/v6/n1/a-conceptual-model-for-understanding-self-directed-learning-in-online-environments.html
Soudi, M., Ali, E., Bali, M., & Mabrouk, N. (2023, December). Generative AI-Based Tutoring System for Upper Egypt Community Schools. Proceedings of the 2023 Conference on Human Centered Artificial Intelligence: Education and Practice, Dublin Ireland.
Spencer, K. (1996). Recovering reading using computer mastery programmes. British Journal of Educational Technology, 27(3), 191-203. https://doi.org/10.1111/j.1467-8535.1996.tb00686.x
Stephen, J. S., Rockinson-Szapkiw, A. J., & Dubay, C. (2020). Persistence model of non-traditional online learners: Self-efficacy, self-regulation, and self-direction. American Journal of Distance Education, 34(4), 306-321. https://doi.org/10.1080/08923647.2020.1745619
Stojanov, A. (2023). Learning with ChatGPT 3.5 as a more knowledgeable other: An autoethnographic study. International Journal of Educational Technology in Higher Education, 20(1), 35. https://doi.org/10.1186/s41239-023-00404-7
Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Scholkopf, B., & Gomez-Rodriguez, M. (2019). Enhancing human learning via spaced repetition optimization. Proceedings of the National Academy of Sciences, 116(10), 3988-3993. https://doi.org/10.1073/pnas.1815156116
Tratteberg, H., Mavroudi, A., Giannakos, M., & Krogstie, J. (2016). Adaptable learning and learning analytics: A case study in a programming course. In Adaptive and Adaptable Learning: 11th European Conference on Technology Enhanced Learning, EC-TEL 2016, Lyon, France, September 13-16, 2016, Proceedings 11 (pp. 665-668). Springer. https://doi.org/10.1007/978-3-319-45153-4_87
Uberoi, N. (1999). Studies on the profile of IMT′s Distance Learning Students. Paradigm, 3(1), 154-159. https://doi.org/10.1177/0971890719990114
Vahldick, A., Mendes, A. J., & Marcelino, M. J. (2017). Learning analytics model in a casual serious game for computer programming learning. In Serious Games, Interaction and Simulation: 6th International Conference, SGAMES 2016, Porto, Portugal, June 16-17, 2016, Revised Selected Papers 6 (pp. 36-44). Springer. https://doi.org/10.1007/978-3-319-51055-2_6
Valle, N., Antonenko, P., Valle, D., Sommer, M., Huggins-Manley, A. C., Dawson, K., Kim, D., & Baiser, B. (2021). Predict or describe? How learning analytics dashboard design influences motivation and statistics anxiety in an online statistics course. Educational Technology Research and Development, 69(3), 1405-1431. https://doi.org/10.1007/s11423-021-09998-z
Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500-1509. https://doi.org/10.1177/0002764213479363
Volet, S., Vauras, M., & Salonen, P. (2009). Self-and social regulation in learning contexts: An integrative perspective. Educational psychologist, 44(4), 215-226. https://doi.org/10.1080/00461520903213584
Vygotsky, L. S. (1962). The Development of Scientific Concepts in Childhood. https://psycnet.apa.org/doi/10.1037/11193-006
Wu, T.-T., Lee, H.-Y., Li, P.-H., Huang, C.-N., & Huang, Y.-M. (2024). Promoting self-regulation progress and knowledge construction in blended learning via ChatGPT-based learning aid. Journal of Educational Computing Research, 61(8), 3-31. https://doi.org/10.1177/07356331231191125
Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168-181. https://doi.org/10.1016/j.chb.2014.09.034
Yadav, S. K., & Pal, S. (2012). Data mining: A prediction for performance improvement of engineering students using classification. arXiv preprint arXiv:1203.3832. https://doi.org/10.48550/arXiv.1203.3832
Yang, A. C., Flanagan, B., & Ogata, H. (2022). Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning. Computers and Education: Artificial Intelligence, 3, 100104. https://doi.org/10.1016/j.caeai.2022.100104
Yang, Y., Majumdar, R., Li, H., Flanagan, B., & Ogata, H. (2022). Design of a learning dashboard to enhance reading outcomes and self-directed learning behaviors in out-of-class extensive reading. Interactive learning environments, 1-18. https://doi.org/10.1080/10494820.2022.2101126
Yousef, A. M. F. (2015). Effective design of blended MOOC environments in higher education [Doctoral dissertation, Aachen, Techn. Hochsch., 2015]. https://scholar.googleusercontent.com/scholar?q=cache:C1ZW6NXp6F0J:scholar.google.com/+Effective+design+of+blended+MOOC+environments+in+higher+education+&hl=zh-TW&as_sdt=0,5&as_vis=1
Yousef, A. M. F., & Khatiry, A. R. (2021). Cognitive versus behavioral learning analytics dashboards for supporting learner’s awareness, reflection, and learning process. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2021.2009881
Yowell, C. M., & Smylie, M. A. (1999). Self-regulation in democratic communities. The Elementary School Journal, 99(5), 469-490. https://doi.org/10.1086/461936
Zhang, R., Zou, D., & Xie, H. (2022). Spaced repetition for authentic mobile-assisted word learning: Nature, learner perceptions, and factors leading to positive perceptions. Computer Assisted Language Learning, 35(9), 2593-2626. https://doi.org/10.1080/09588221.2021.1888752
Zheng, J., Xing, W., Zhu, G., Chen, G., Zhao, H., & Xie, C. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669. https://doi.org/10.1016/j.compedu.2019.103669
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2
Zimmerman, B. J. (2013). Theories of self-regulated learning and academic achievement: An overview and analysis. Self-regulated learning and academic achievement, 1-36.
指導教授 洪暉鈞(Hui-Chun Hung) 審核日期 2024-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明