博碩士論文 111554001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.16.135.185
姓名 王希丞(Sei-Cheng Wang)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 以想法為中心之科學探究學習系統遊戲化:系統開發與初步評估
(Gamification and Initial Evaluation of an Idea-centered Science Inquiry Learning Platform)
相關論文
★ 支援國小科展探究教與學之網路科展探究系統的開發與評估★ 教師科展專業知識分享社群平台系統開發與評估
★ 科學小論文寫作平台的建置與評估★ 「探究教學線上教師社群平台」之建置與評估:以知識管理理論為基礎
★ 科學閱讀平台之發展與評估★ 以鷹架為基礎之科展探究系統平台之開發與評估
★ Improving Novice Teachers’ Instructional Practice Through Online Multilevel Reflection: The Role of Novice Teachers’ Beliefs★ The Effect s of Video-based Reflection on Preservice Teachers′ Micro Teaching Focusing on Meaningful Learning with ICT
★ Examining Teachers’ Online Video-Based Reflective Practice for Professional Development Regarding Guided-Discovery Learning Instruction★ 數位教育遊戲之開發與評估:以「Mr.道耳頓的奇幻歷險」為例
★ 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估★ 同步討論與反思系統(SDRS)對小學生知識建構學習環境感知和學習成果的影響
★ 具有集成設計框架的同步在線論證系統用戶界面:重新設計和評估★ 科學探究學習系統之開發與評估
★ 支援科學專題學習 之線上學習平台開發與評估★ 線上合作共同備課平台:開發與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著21世紀科技的迅速發展,科學探究能力已成為培養創新人才的核心目標之一。然而,目前教育系統在實施科學探究教學時,仍面臨學生參與度不足、學習倦怠感高及知識應用困難等挑戰。本研究針對這些問題,開發了一套結合科學探究學習、遊戲化學習與知識翻新的科學探究學習系統,旨在提升學生的學習動機、問題解決能力與知識應用成效。系統設計引入遊戲化元素以增強學習的趣味性與持續性,並以鷹架理論作為支持策略,幫助學生逐步掌握自主學習與知識構建的能力。
科學探究強調學習者的主動性與探索性,致力於促進批判性思維與創新實踐能力;遊戲化學習則透過遊戲元素的融入,有效減輕學習倦怠感並提升動機;知識翻新聚焦於互動與協作中的知識重構,旨在支持學生面向真實問題的解決與應用。然而,目前的學習系統多忽略學習者的倦怠感對學習成效的影響,並缺乏結合遊戲化設計與鷹架策略的整合性研究。本研究正是基於此研究缺口,開發一套創新系統,以回應教育創新需求。
系統開發完成後,本研究透過問卷調查收集42位教師的回饋,重點評估系統的知覺有用性、知覺易用性、使用意願,以及鷹架功能與遊戲化元素在學習支持中的效果。同時,針對遊戲化設計在提升學生學習動機與減少倦怠感方面的效用進行深入分析,並蒐集教師對系統改進的具體建議。研究結果顯示,大多數教師認為該系統在整體科技接受度、知覺有用性、知覺易用性、鷹架工具的支持效果,以及遊戲化對學生學習動機的提升方面均具有明顯的正向影響。基於上述結果,本文提出多項系統優化建議,旨在進一步提升系統設計的效能,並為未來教育創新研究與實務應用提供具體參考方向。
摘要(英) With the rapid development of technology in the 21st century, scientific inquiry skills have become a core goal in cultivating innovative talents. However, current education systems face challenges in implementing scientific inquiry teaching, such as low student engagement, high learning burnout, and difficulties in knowledge application. To address these issues, this study developed an innovative scientific inquiry learning system that integrates scientific inquiry learning, gamified learning, and knowledge building. The system aims to enhance students′ learning motivation, problem-solving skills, and knowledge application effectiveness. The design incorporates gamification elements to increase learning enjoyment and sustainability, while using scaffolding theory as a support strategy to help students gradually master self-directed learning and knowledge construction skills.
Scientific inquiry emphasizes learners′ initiative and exploratory abilities, fostering critical thinking and innovative practices. Gamified learning, by incorporating game elements, effectively reduces learning burnout and enhances motivation. Knowledge building focuses on the reconstruction of knowledge through interaction and collaboration, equipping students to tackle real-world problems. However, existing learning systems often overlook the impact of burnout on learning outcomes and lack integrated studies combining gamification design and scaffolding strategies. This study addresses these research gaps by developing an innovative system to meet the needs of educational innovation.
Upon completion of system development, this study collected feedback from 42 teachers through a questionnaire survey, focusing on evaluating the system′s perceived usefulness, perceived ease of use, intention to use, and the effectiveness of scaffolding tools and gamification elements in supporting learning. Additionally, the study conducted an in-depth analysis of the impact of gamification design on enhancing students′ learning motivation and reducing burnout, while gathering teachers’ specific suggestions for system improvement. Results indicated that most teachers perceived the system positively in terms of overall technology acceptance, perceived usefulness, perceived ease of use, the support effectiveness of scaffolding tools, and the impact of gamification on student motivation. Based on these findings, this paper proposes several system optimization recommendations to further enhance system performance and provide concrete reference points for future research and practical applications in educational innovation.
關鍵字(中) ★ 科學探究
★ 探究學習
★ 遊戲化學習
★ 鷹架理論
★ 知識翻新理論
關鍵字(英) ★ Scientific Inquiry
★ Inquiry Learning
★ Game-Based Learning
★ Scaffolding Theory
★ Knowledge Building Theory
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究問題 3
第四節 名詞解釋 4
第二章 文獻探討 7
第一節 科學探究 7
第二節 遊戲化學習 11
第三節 鷹架理論 15
第四節 知識翻新 17
第三章 系統分析與實作 22
第一節 系統開發方式 22
第二節 系統設計與規劃 28
第三節 系統配置 39
第四節 系統介面與功能 41
第四章 研究方法 73
第一節 研究對象 73
第二節 研究流程 76
第三節 研究流程評估 78
第四節 研究工具 81
第五節 資料收集與分析 85
第五章 研究結果與討論 86
第一節 教師對於本系統之科技接受度調查 86
第二節 教師與學生鷹架工具之知覺有用性問卷 90
第三節 遊戲化對於學生學習動機提升之問卷 98
第四節 不同背景變項的教師對於「遊戲化科學探究學習系統」的感知差異 100
第五節 教師對於「遊戲化科學探究學習系統」之系統建議與回饋 105
第六節 研究討論 110
第六章 結論與建議 112
第一節 研究結論 112
第二節 研究建議 115
參考文獻 117
附錄 123
附錄一 教師背景問卷 123
附錄二 教師對於「遊戲化科學探究學習系統」之科技接受度調查 124
附錄三 學生鷹架與工具之問卷 125
附錄四 教師鷹架與工具之問卷 127
附錄五 遊戲化對於學生學習動機提升之問卷 129
附錄六 建議與回饋 130
參考文獻 教育部(2018)。十二年國民基本教育課程綱要 -自然科學領域。台北市,教育部。
教育部(2005)。科學教育白皮書。台北市,教育部。
蔡宛庭(2016)。支援科學專題學習之線上學習平台開發與評估。國立中央大學網路學習科技研究所碩士論文,桃園市。
陳虹如(2020)。基於知識翻新理論的科學探究專題平台之開發與初步評估。國立中央大學網路學習科技研究所碩士論文,桃園市。
Teece, D. J. (1998). Capturing value from knowledge assets: The new economy, markets for know-how, and intangible assets. California management review, 40(3), 55-79.
Majuri, J., Koivisto, J., & Hamari, J. (2018). Gamification of education and learning: A review of empirical literature. Proceedings of the 2nd International GamiFIN Conference, GamiFIN 2018. CEUR-WS.
Anderson, C. A., & Rainie, L. (2010). The future of gamification in education. Pew Research Center.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. National Academy Press.
Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The Journal of the Learning Sciences, 3(3), 265–283. https://doi.org/10.1207/s15327809jls0303_3
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Open Court.
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–115). Cambridge University Press.
Lin, T. J., & Chang, C. Y. (2014). The knowledge building perspective on the transfer of learning. Educational Psychologist, 49(2), 83–94. https://doi.org/10.1080/00461520.2014.926813
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27–46. https://doi.org/10.1080/10494820701413103
Dewey, J. (1938). Experience and education. Macmillan.
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368
Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.
Kuhn, D. (2005). Education for thinking. Harvard University Press.

Pedaste, M., Maeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.01.002
Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? A literature review of empirical studies on gamification. In 2014 47th Hawaii International Conference on System Sciences (pp. 3025–3034). IEEE. https://doi.org/10.1109/HICSS.2014.377
Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30(4), 344–360. https://doi.org/10.1007/s11031-006-9051-8
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media.
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining "gamification". In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (pp. 9–15). https://doi.org/10.1145/2181037.2181040
Huang, W. H.-Y., & Soman, D. (2013). Gamification of education. University of Toronto, Rotman School of Management.
Landers, R. N. (2014). Developing a theory of gamified learning: Linking serious games and gamification of learning. Simulation & Gaming, 45(6), 752–768. https://doi.org/10.1177/1046878114563660
Zainuddin, Z., Chu, S. K. W., Shujahat, M., & Perera, C. J. (2020). The impact of gamification on learning and instruction: A systematic review of empirical evidence. Educational Research Review, 30, 100326.
https://doi.org/10.1016/j.edurev.2020.100326
Dominguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernandez-Sanz, L., Pages, C., & Martinez-Herraiz, J. J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers & Education, 63, 380–392. https://doi.org/10.1016/j.compedu.2012.12.022
Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–33.
Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 515–544). Routledge.
Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385. https://doi.org/10.1002/tea.1021
Khishfe, R., & Lederman, N. G. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395–418. https://doi.org/10.1002/tea.20131
Lederman, N. G., Lederman, J. S., & Antink, A. (2014). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 2(3), 138–147. https://doi.org/10.18404/ijemst.34810
Llewellyn, D. (2013). Inquire within: Implementing inquiry-based science standards in grades 3-8 (3rd ed.). Corwin Press.
Lee, O., Buxton, C., Lewis, S., & LeRoy, K. (2006). Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention. Journal of Research in Science Teaching, 43(7), 607–636. https://doi.org/10.1002/tea.20114
National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. National Academy Press.
Sailer, M., Hense, J. U., Mandl, H., & Klevers, M. (2017). Psychological perspectives on motivation through gamification. Interaction Design and Architecture(s), 33, 28–47.
Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 20. https://doi.org/10.1145/950566.950595
Kapp, K. M. (2012). The gamification of learning and instruction: Game-based methods and strategies for training and education. John Wiley & Sons
Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. International Journal of Human-Computer Studies, 74, 14–31. https://doi.org/10.1016/j.ijhcs.2014.09.004
Kohn, A. (1993). Punished by rewards: The trouble with gold stars, incentive plans, A′s, praise, and other bribes. Houghton Mifflin Harcourt.
Crawford, C. (2014). The art of interactive design: A euphonious and illuminating guide to building successful software. No Starch Press.
Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts. In D. Kirshner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 55–78). Lawrence Erlbaum.
Van der Stuyf, R. (2002). Scaffolding as a teaching strategy. Adolescent Learning and Development, 1(1), 1–7.
Hogan, K., & Pressley, M. (1997). Scaffolding student learning: Instructional approaches and issues. Cambridge University Press.
Bereiter, C. (2002). Education and mind in the knowledge age. Lawrence Erlbaum Associates Publishers.
指導教授 吳穎沺(Ying-Tien Wu) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明