博碩士論文 109281001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.17.141.114
姓名 李金彥(Chin-Yen Lee)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Embedding the n-Qubit Projective Clifford Group into a Symmetric Group)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) n-量子比特Clifford群 Cliffn 和 n-量子比特射影Clifford群 Cn 在量子計算中扮演著關鍵角色,尤其在量子錯誤糾正和量子算法中。然而,即使對於較小的n值,文獻中也很少能找到直接構造這些群的方法。
在本論文中,我們利用Clifford閘的標準形來確定Cn 生成元的中央化子。基於這些結果,我們提出將Cn 嵌入到Sym2(4n ?1) 中的方法。此外,我們還證明了Cn 中z-閘的中央化子與Cn 的慣性子群同構。
摘要(英) The n-qubit Clifford group, Cliffn, and the n-qubit projective Clifford group, Cn, play pivotal roles in quantum computing, especially in quantum error correction and quantum algorithms. However, methods for directly constructing these groups, even for small values of n, are
rarely found in the literature.
In this thesis, we use the normal form of Clifford gates to determine the centralizer of the generators of Cn. Based on these results, we propose an embedding of Cn into Sym2(4n ?1). Furthermore, we show that the centralizer of the z-gate within Cn is isomorphic to the inertia subgroup of Cn.
關鍵字(中) ★ Clifford群
★ 群表示
★ 標準形
★ 慣性子群
★ 排列表現
關鍵字(英) ★ Clifford group
★ presentation
★ normal form
★ inertia subgroup
★ permutation presentation
論文目次 中文摘要 ............................................................................................. i
英文摘要 ............................................................................................. iii
1. Introduction ................................................................................. 3
2. Known Results on Clifford Groups............................................... 9
2.1 Normal form for Clifford operators . . . . . . . . . . . . . . 10
2.1.1 A presentation of Cn . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Rewriting rules . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Normal subgroups of Cn . . . . . . . . . . . . . . . . . . . . 23
2.3 Irreducible representations of Cn . . . . . . . . . . . . . . . 25
3. Centralizers of Generators of Cn ................................................... 33
3.1 The centralizer of z1 gate in Cn . . . . . . . . . . . . . . . . 34
3.2 The centralizer of s1 gate in Cn . . . . . . . . . . . . . . . . 38
3.2.1 Application: A permutation representation of Cn . . . . . 41
3.2.2 A presentation of INn . . . . . . . . . . . . . . . . . . . 45
3.3 The centralizer of h1 gate in Cn . . . . . . . . . . . . . . . . 48
3.4 The centralizer of Λ1 gate in Cn . . . . . . . . . . . . . . . 50
參考文獻 ............................................................................................. 57
A. Basics of Representation Theory ................................................. 59
B. Supplement Equations for Proof 3.17 .......................................... 61
B.1 Equations for ? = 1 . . . . . . . . . . . . . . . . . . . . . . 61
B.2 Equations for ? = 2 . . . . . . . . . . . . . . . . . . . . . . 62
B.3 Equations for ? ? 3 . . . . . . . . . . . . . . . . . . . . . . 67
C. My Other Works During PhD ..................................................... 71
參考文獻 [AG] S. Aaronson, and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
[CST] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Clifford theory and applications, Journal of Mathematical Sciences 156, 29–43 (2009).
[DD] J. Dehaene, and B. De Moor, Clifford group, stabilizer states, and linear and quadratic operations over GF(2), Phys. Rev. A 68, 042318 (2003).
[Fis] B. Fischer, Examples of groups with identical character tables, Rend. Circ. Mat. Palermo (2) Suppl. 19, 71–77 (1988).
[FG] J. Fulman, and R. M. Guralnick, Enumeration of conjugacy
classes in affine groups, Algebra & Number Theory 18, 1189–
1219 (2024).
[GAP] The GAP Group, GAP – Groups, Algorithms, and Program-
ming, Version 4.12.2; 2022, https://www.gap-system.org.
[Go] D. Gottesman, The Heisenberg representation of quantum computers, arXiv:quant-ph/9807006 (1998).
[Lis] P. Lison?k, New maximal two-distance sets, J. Combin. Theory, Ser. A 77, 318–338 (1997).
[Joh] D. L. Johnson, Presentations of Groups, Cambridge University Press, Cambridge, 1997, No. 15.
[LRS] D. G. Larman, C. A. Rogers, and J. J. Seidel, On Two-Distance Sets in Euclidean Space, Bull. London Math. Soc. 9, 261–267 (1977)
[LYPL] C.-Y. Lee, W.-H. Yu, Y.-N. Peng and C.-J. Lai On character table of Clifford groups, arXiv:2309.14850v2.
[Ma] K. Mastel, The Clifford theory of the n-qubit Clifford group, arXiv:2307.05810
[Neu] A. Neumaier, Distance matrices, dimension, and conference graphs, Indag. Math. 84, 385–391 (1981).
[NC] M. A. Nielsen, and I. L. Chuang, Quantum Computation
and Quantum Information, Cambridge University Press, Cambridge, 2001, Vol. 2.
[Sel] P. Selinger, Generators and relations for n-qubit Clifford operators, Logical Methods in Computer Science 11 (2:10), pp.1–17 (2015).
[Van] E. Van Den Berg, A simple method for sampling random Clifford operators, Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE), pp. 54–59 (2021).
指導教授 俞韋?(Wei-Hsuan Yu) 審核日期 2025-3-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明