博碩士論文 110323056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.189.195.48
姓名 施菀柔(Wan-Rou Shih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 陰離子交換膜水電解電極觸媒塗佈之製程改善研究
(Improvement of the Catalyst Coated Substrate Fabrication Method for Anion Exchange Membrane Water Electrolyzers)
相關論文
★ 高溫型質子交換膜燃料電池堆性能測試與熱管理研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-30以後開放)
摘要(中) 為應對氣候危機,各國積極推動綠色再生能源,來減少溫室氣體排放並提高能源效率,氫氣能源因其高效能與環保特性成為主流,水電解產氫利用電能將水分解成氫氣和氧氣的技術,該過程在陽極和陰極上分別進行氧氣析出反應和氫氣析出反應。因此,本研究探討陰離子交換膜水電解技術,該技術不需完全依賴貴金屬,從而降低生產成本,是生產綠氫的理想選擇,有助於減少碳排放,實現能源永續發展。
本研究中,自製陰離子交換膜水電解電極,選用40% Ni on Vulcan XC-72非貴金屬作為陽極觸媒,選用40% Pt on Vulcan XC-72R作為陰極觸媒,離子聚合物溶液使用FumionR FAA-3-SOLUT-10,分散劑則由異丙醇與去離子水組成。本研究透過改變觸媒與離子聚合物的比例以及分散劑的總量,探討其對水電解效能的影響。並組裝陰離子交換膜水電解器,研究不同濃度電解質溶液 (氫氧化鉀溶液) 下的水電解特性。為確保水電解器在長時間運行中保持穩定,本研究亦進行耐久性測試,觀察電解器電解效能隨著時間的變化。
本研究結果顯示,在25 ℃ 操作溫度下,陽極和陰極側的最佳觸媒與離子聚合物比例為 80:20 wt.%,異丙醇與去離子水的最佳比例為200 mg:200 mg。在這些最佳的電極製備條件下,電解器在50°C操作溫度與1.3 M KOH電解溶液條件下,在電壓2.0V時之最佳電流密度為687.36 mA/cm2。同時,耐久性實驗也驗證了隨著時間的推移,電解器的效能會逐漸下降。
摘要(英) To address the climate crisis, many countries actively promote green renewable energy to reduce greenhouse gas emissions and improve energy efficiency. Hydrogen energy has become mainstream due to its high efficiency and environmental benefits. Water electrolysis is a technology that uses electrical energy to split water into hydrogen and oxygen, with oxygen evolution occurring at the anode and hydrogen evolution at the cathode.
Therefore, this research focuses on anion exchange membrane water electrolysis, which does not rely entirely on precious metals, thereby reducing the costs of green hydrogen production. This method is a promising choice for producing green hydrogen, contributing to the reduction of carbon emissions and achieving sustainable energy development.
In this study, the catalyst ink was prepared, with 40% Ni on Vulcan XC 72 (non-precious metal) as the anode catalyst, and 40% Pt on Vulcan XC 72R (precious metal) as the cathode catalyst. The ionomer solution added in the ink was FumionR FAA-3-SOLUT-10, and the dispersant is consisted of isopropanol and deionized water. The effects of the catalyst to ionomer ratio and the total amount of dispersant on water electrolysis performance were investigated. Additionally, an anion exchange membrane water electrolyzer was assembled, and the water electrolysis performance under different concentrations of electrolyte solution (potassium hydroxide solution) was studied. To ensure the electrolyzer′s stability during prolonged operation, durability tests were conducted to observe changes in electrolyzer performance over time.
The results show that the optimal catalyst to ionomer ratio at the operating temperature of 25°C is 80:20 wt.% for both anode and cathode sides, with an isopropanol to deionized water ratio of 200 mg:200 mg. Under these optimal catalyst preparation conditions, the electrolyzer achieves an optimal current density of 687.36 mA/cm2 at 2.0V, under 50°C and 1.3 M KOH electrolyte solution. Additionally, the experiments confirmed that the performance of the electrolyzer gradually decreases over time.
關鍵字(中) ★ 陰離子交換膜水電解
★ 電極觸媒塗佈法
★ 非貴金屬觸媒
★ 離子聚合物
★ 電解耐久性
★ 綠氫生產
關鍵字(英) ★ Anion exchange membrane water electrolysis
★ Catalyst -Coated Substrate layer
★ Non-precious metal catalyst
★ Ionomer
★ Electrolysis Durability
★ Green Hydrogen Production
論文目次 致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
符號索引 xiii
第一章 緒論 1
1.1 研究起源 1
1.2 研究動機 3
1.3 研究目的 4
第二章 文獻回顧 5
2.1 水電解製氫簡介 5
2.1.1 水電解製氫歷程與原理 5
2.1.2 水電解製氫技術發展 7
2.2 陰離子交換水電解技術發展 10
2.2.1 陰離子交換膜水電解發展歷程 11
2.2.2 陰離子交換膜水電解之工作原理 16
2.2.3 陰離子交換膜電解器結構 18
第三章 研究方法 23
3.1 實驗設備與材料 23
3.2 實驗流程 26
3.2.1 第一步-製作觸媒漿料 26
3.2.2 第二步-製備多孔電極 27
3.2.3 第三步-準備陰離子交換膜 28
3.2.4 第四步-組裝陰離子交換膜電解器 29
3.2.5 第五步-電解性能測試 30
3.2.6 第六步-電化學阻抗分析 32
3.2.7 第七步-掃描式電子顯微鏡 (SEM) 34
第四章 結果與討論 35
4.1 觸媒與離子聚合物比例對效能的影響 35
4.1.1 電解性能分析 36
4.1.2 電化學阻抗頻譜分析 39
4.1.3 SEM 分析 43
4.2 分散溶劑總量比例對效能的影響 55
4.2.1 電解性能分析 55
4.2.2 電化學阻抗頻譜分析 58
4.2.3 SEM 分析 61
4.3 不同電解溶液濃度對於效能的影響 69
4.3.1 電解性能分析 69
4.3.2 電化學阻抗頻譜分析 72
4.4 耐久性測試 77
第五章 結論與未來研究方向 79
5.1 結論 79
5.2 未來研究方向 81
參考文獻 82
參考文獻 [1]online resources: "UNFCCC, “Nationally Determined Contributions Registry, " Unfccc.int, 2022. 取自https://unfccc.int/NDCREG
[2]Dieter Helm, Net zero : how we stop causing climate change. London: William Collins, 2020.
[3]Abe, John O., et al. "Hydrogen energy, economy and storage: Review and recommendation." International journal of hydrogen energy 44.29 (2019): 15072-15086.
[4]Ishaq, Haris, Ibrahim Dincer, and Curran Crawford. "A review on hydrogen production and utilization: Challenges and opportunities." International Journal of Hydrogen Energy 47.62 (2022): 26238-26264.
[5]Miller, Hamish Andrew, et al. "Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions." Sustainable Energy & Fuels 4.5 (2020): 2114-2133.
[6]Kumar, S. Shiva, and Hankwon Lim. "An overview of water electrolysis technologies for green hydrogen production." Energy reports 8 (2022): 13793-13813.
[7]Pathak, Pawan Kumar, Anil Kumar Yadav, and Sanjeevikumar Padmanaban. "Transition toward emission-free energy systems by 2050: Potential role of hydrogen." International Journal of Hydrogen Energy 48.26 (2023): 9921-9927.
[8]Zeng, Kai, and Dongke Zhang. "Recent progress in alkaline water electrolysis for hydrogen production and applications." Progress in energy and combustion science 36.3 (2010): 307-326.
[9]Liu, Rui-Ting, et al. "Recent advances in proton exchange membrane water electrolysis." Chemical Society Reviews (2023).
[10]Vincent, Immanuel, and Dmitri Bessarabov. "Low cost hydrogen production by anion exchange membrane electrolysis: A review." Renewable and Sustainable Energy Reviews 81 (2018): 1690-1704.
[11]Pushkareva, I. V., et al. "Comparative study of anion exchange membranes for low-cost water electrolysis." International Journal of Hydrogen Energy 45.49 (2020): 26070-26079.
[12]Mandal, Mrinmay. "Recent advancement on anion exchange membranes for fuel cell and water electrolysis." ChemElectroChem 8.1 (2021): 36-45.
[13]Volta, Alessandro. "On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S." Philosophical transactions of the Royal Society of London 90 (1800)
[14]Sudduth, William M. "The voltaic pile and electro-chemical theory in 1800." Ambix 27.1 (1980): 26-35.
[15]Davy, Humphry. "I. The bakerian lecture, on some chemical agencies of electricity." Philosophical Transactions of the Royal Society of London 97, 1807
[16]Manabe, Akiyoshi, et al. "Basic study of alkaline water electrolysis." Electrochimica Acta 100 (2013): 249-256.
[17]Zeng, Kai, and Dongke Zhang. "Recent progress in alkaline water electrolysis for hydrogen production and applications." Progress in energy and combustion science 36.3 (2010): 307-326.
[18]Brauns, Jorn, and Thomas Turek. "Alkaline water electrolysis powered by renewable energy: A review." Processes 8.2 (2020): 248.
[19]Kumar, S. Shiva, and V. Himabindu. "Hydrogen production by PEM water electrolysis–A review." Materials Science for Energy Technologies 2.3 (2019): 442-454.
[20]Vinodh, Rajangam, et al. "Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review." Polymers 15.9 (2023): 2144.
[21]IRENA, IREA. "Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 C climate goal." Abu Dhabi: International Renewable Energy Agency (2020).
[22]Santoro, Carlo, et al. "What is Next in Anion?Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future." ChemSusChem 15.8 (2022): e202200027.
[23]Cossar, Emily, et al. "The performance of nickel and nickel-iron catalysts evaluated as anodes in anion exchange membrane water electrolysis." Catalysts 9.10 (2019): 814.
[24]Capri, Angela, et al. "Anion exchange membrane water electrolysis based on nickel ferrite catalysts." ChemElectroChem 10.1 (2023): e202201056.
[25]Fabbri, Emiliana, et al. "Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction." Catalysis Science & Technology 4.11 (2014): 3800-3821.
[26]Man, Isabela C., et al. "Universality in oxygen evolution electrocatalysis on oxide surfaces." ChemCatChem 3.7 (2011): 1159-1165.
[27]Spori, Camillo, et al. "The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation." Angewandte Chemie International Edition 56.22 (2017): 5994-6021.
[28]Pavel, Claudiu C., et al. "Highly efficient platinum group metal free based membrane?electrode assembly for anion exchange membrane water electrolysis." Angewandte Chemie International Edition 53.5 (2014): 1378-1381.
[29]Vincent, Immanuel, Andries Kruger, and Dmitri Bessarabov. "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis." International Journal of Hydrogen Energy 42.16 (2017): 10752-10761.
[30]Park, Ji Eun, et al. "High-performance anion-exchange membrane water electrolysis." Electrochimica Acta 295 (2019): 99-106.
[31]Komkova, E. N., et al. "Anion-exchange membranes containing diamines: preparation and stability in alkaline solution." Journal of Membrane Science 244.1-2 (2004): 25-34.
[32]Zeng, Lin, and T. S. Zhao. "High-performance alkaline ionomer for alkaline exchange membrane fuel cells." Electrochemistry communications 34 (2013): 278-281.
[33]Vincent, Immanuel, and Dmitri Bessarabov. "Low cost hydrogen production by anion exchange membrane electrolysis: A review." Renewable and Sustainable Energy Reviews 81 (2018): 1690-1704.
[34]Faid, Alaa Y., and Svein Sunde. "Anion exchange membrane water electrolysis from catalyst design to the membrane electrode assembly." Energy technology 10.9 (2022): 2200506.
[35]Zeng, Lin, and T. S. Zhao. "Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis." Nano Energy 11 (2015): 110-118.
[36]Wu, Xu, and Keith Scott. "CuxCo3? xO4 (0? x< 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers." Journal of Materials Chemistry 21.33 (2011): 12344-12351.
[37]Parrondo, Javier, et al. "Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis." Rsc Advances 4.19 (2014): 9875-9879.
[38]Motealleh, B.; Liu, Z.; Masel, R.I.; Sculley, J.P.; Ni, Z.R.; Meroueh, L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int. J. Hydrogen Energy 2021, 46, 3379–3386.
[39]Li, Jiao, et al. "Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design." ChemSusChem (2024): e202400239.
[40]Lin, Xinzhang, Junyuan Xu, and Zhangquan Peng. "Atomically dispersed catalysts toward the oxygen evolution reaction in electrochemical water splitting: from catalyst design, performance to catalytic mechanism." Next Sustainability 3 (2024): 100023.
[41]Zhu, Wenhua H., Robert U. Payne, and Bruce J. Tatarchuk. "PEM stack test and analysis in a power system at operational load via ac impedance." Journal of power sources 168.1 (2007): 211-217.
[42]S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y. Seung Kim,“Anion exchange membrane fuel cells: Current status and remaining challenges,” Journal of Power Sources, vol. 375, pp. 170-184, 2018.
指導教授 陳震宇(Chen-Yu Chen) 審核日期 2024-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明