參考文獻 |
[1] T. Faug, Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines, Physical Review, 92 (2015) 062310.
[2] W.R. Cui, J.G. Chen, W.Y. Zhao, X.Q. Chen, Characteristics of wake morphology during debris flow when passing a cylindrical obstacle, Physics of Fluids, 35.11 (2023) 116604.
[3] A. Pasqua, A. Leonardi, M. Pirulli, Comparison of depth-averaged and 3D models for dense granular flows, IOP Conference Series: Earth and Environmental Science, (2021) 012101.
[4] R. Zhang, D. Su, Y.J. Jiang, H. Xiong, W. Han, X. Chen, Influence of topography on the impact mechanism of dry granular flow: a DEM study, Powder Technology, 416 (2023) 118216.
[5] A.M. Abdelrazek, I. Kimura, Y. Shimizu, Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method, Journal of Glaciology, 62 (2016) 335-347.
[6] Z. Chen, D. Rickenmann, Y. Zhang, S. He, Effects of obstacle′s curvature on shock dynamics of gravity-driven granular flows impacting a circular cylinder, Engineering Geology, 293 (2021) 106343.
[7] I. Redaelli, C. Prisco, F. Calvetti, Dry granular masses impacting on rigid obstacles: numerical analysis and theoretical modelling, Acta Geotechnica, 16 (2021) 3923-3946.
[8] S.B. Savage, Granular flows down rough inclines-review and extension, Studies in Applied Mechanics, 7 (1983) 261-282.
[9] P. A. CUNDALL, O. D. L. STRACK, A discrete numerical model for granular assemblies, geotechnique, 29 (1979) 47-65.
[10] Y.C. Tai, J.M.N.T. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions, Ann. Glaciol., 32 (2001) 281-284.
[11] M.C. Chiou, Y. Wang, K. Hutter, Influence of obstacles on rapid granular flows, Acta Mechanica, 175 (2005) 105-122.
[12] B. Domnik, S.P. Pudasaini, R. Katzenbach, S.A. Miller, Coupling of full two-dimensional and depth-averaged models for granular flows, Journal of Non-Newtonian Fluid Mechanics, 201 (2013) 56-68.
[13] H. Teufelsbauer, Y. Wang, M.C. Chiou, W. Wu, Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment, Granular Matter, 11 (2009) 209-220.
[14] T. Faug, R. Beguin, B. Chanut, Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows, Physical Review, 80 (2009) 021305.
[15] H. Teufelsbauer, Y. Wang, S.P. Pudasaini, R.I. Borja, W. Wu, DEM simulation of impact force exerted by granular flow on rigid structures, Acta Geotechnica 6 (2011) 119-133.
[16] S.H. Chou, L.S. Lu, S.S. Hsiau, DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles, Granular Matter, 14 (2012) 719-732.
[17] Hakonardottir, K. Martha, A. J. Hogg, Oblique shocks in rapid granular flows, Physics of fluids, 17 (2005) 077101.
[18] Cui, Xinjun, J. M. N. T. Gray, T. Johannesson, Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland, Journal of Geophysical Research: Earth Surface, 112 (2007) F4.
[19] J. Gray, X. Cui, Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows, Journal of Fluid Mechanics, 579 (2007) 113-136.
[20] S.P. Pudasaini, K. Hutter, S.S. Hsiau, S.C. Tai, Y .Wang, R. Katzenbach, Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Physics of fluids, 19 (2007) 053302.
[21] T. Heinze, A highly flexible laboratory setup to demonstrate granular flow characteristics: With special emphasize on education and science communication, Natural Hazards, 104 (2020) 1581-1596.
[22] X. Cui, M. Harris, M. Howarth, D. Zealey, R. Brown, Jonny Shepherd, Granular flow around a cylindrical obstacle in an inclined chute, Physics of Fluids, 34 (2022) 093308.
[23] Y. Jaiswal, A. Khan, R. Kumar, S. Kumar, Shocked confined-granular flow over obstacles, Journal of Fluid Mechanics, 960 (2023) A21.
[24] X. Cui, Strong oblique shock waves in granular free-surface flows, Physics of Fluids, 33 (2021) 083302.
[25] S.P. Pudasaini, C. Kroner, Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Physical Review, 78 (2008) 041308.
[26] J. Gray, Y.C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, Journal of Fluid Mechanics, 491 (2003) 161-181.
[27] C. Tregaskis, C.G. Johnson, X. Cui, J. Gray, Subcritical and supercritical granular flow around an obstacle on a rough inclined plane, Journal of Fluid Mechanics, 933 (2022) A25.
[28] A. Khan, P. Hankare, S. Verma, Y. Jaiswal, R. Kumar, S. Kumar, Detachment of strong shocks in confined granular flows, Journal of Fluid Mechanics, 935 (2022) A13.
[29] A.K. Mathews, A. Khan, B. Sharma, S. Kumar, R. Kumar, A numerical investigation of granular shock waves over a circular cylinder using the discrete element method, Journal of Fluid Mechanics, 936 (2022) A11.
[30] A. Albaba, S. Lambert, F. Nicot, B. Chareyre, Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling, Granular Matter, 17 (2015) 603-616.
[31] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Applied Mathematical Modelling, 74 (2019) 540-568.
[32] C. Thornton, C. Randall, Applications of theoretical contact mechanics to solid particle system simulation, J. Appl. Mech., 20 (1988) 133-142.
[33] Y.C. Chung, T.C. Kuo, S.S. Hsiau, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- Part I: Exploration of transport properties, Powder Technology, 400 (2022) 117220. |