博碩士論文 111323014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.118.209.158
姓名 蘇浚弘(Jun-Hong Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法模擬斜坡顆粒流 撞擊障礙物 的震波現象
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-31以後開放)
摘要(中) 本研究採用離散元素法(Discrete Element Method, DEM)模擬顆粒體在滑道中撞擊兩種障礙物的流動與力學行為,分別為楔型障礙物與圓柱障礙物,分析障礙物對滑道中顆粒流傳輸性質與內部性質的影響。分析顆粒流的流動深度,流動速度,粒子溫度等物理量,及正向應力、剪應力與應力比的分佈,研究結果顯示:(1) 在楔型障礙物中,福祿數越大,模擬結果與理論解析解越接近,換言之滑道坡度越大,兩者更為接近。在圓柱障礙物中,福祿數越小,模擬結果與理論解析解越接近,表示滑道坡度越小兩者越接近;(2) 顆粒流撞擊障礙物產生不同的衝擊波,衝擊波型受到滑道傾角與半頂角的影響,有接觸波與非接觸波的產生,在圓柱障礙物中,衝擊波型與滑道傾角及直徑無關,皆產生非接觸波;(3) 因障礙物的影響,在兩種障礙物模擬中皆有顆粒滯留的現象產生,造成障礙物前方的流動深度上升,流動速度下降、粒子溫度升高及呈現較大的應力值,隨著障礙物尺寸越大,滯留現象也越早發生;(4) 在楔型障礙物中,上游處σxx/σzz震盪平均值皆為1,半頂角25°時在障礙物前方可觀察到最大應力比值接近6.5。在滑道底部τ /σzz中,上游處震盪平均值約為0.36,半頂角25°時在障礙物前方可觀察到最大應力比值接近0.75。在圓柱障礙物中,與楔型障礙物結論相同,σxx/σzz在上游處震盪平均值皆為1,滑道傾角20°時在障礙物前方可觀察到最大應力比值接近4.4。在滑道底部τ /σzz中,上游處震盪平均值約為0.36,滑道傾角35°時在障礙前方可觀察到最大應力比值接近0.76。
摘要(英) This study employs the Discrete Element Method (DEM) to simulate the flow and mechanical behavior of granular materials impacting two types of obstacles in a chute: wedge-shaped obstacles and cylindrical obstacles. The study explores the effects of these obstacles on the transport properties and internal characteristics of the granular flow in the chute. The analysis includes the flow depth, flow velocity, granular temperature, as well as the distribution of normal stresses, shear stresses, and stress ratios. Major research findings are summarized below: (1) In the case of wedge-shaped obstacles, the larger the Froude number, the closer the DEM simulation results are to the theoretical analytical solutions; in other words, the greater the chute slope, the closer the results are. In the case of cylindrical obstacles, the smaller the Froude number, the closer the DEM simulation results are to the theoretical analytical solutions, indicating that the smaller the chute slope, the closer the results are; (2) Granular flow impacting the obstacles generates two types of shock waves (Contact and non-contact waves), with the shock wave type being influenced by the chute angle and the half-apex angle of the wedge-shaped obstacle. In the case of cylindrical obstacles, the shock wave type is independent of the chute angle and obstacle diameter, with non-contact waves always being created; (3) Due to the influence of the obstacles, both types of DEM simulations exhibit particle retention phenomena, leading to an increase in flow depth, a decrease in flow velocity, an increase in granular temperature, and higher stress values in front of the obstacles. As the obstacle size increases, the retention phenomena occur earlier; (4) In the case of wedge-shaped obstacles, the upstream average value of σxx/σzz is 1.0, and a maximum stress ratio close to 6.5 is observed in front of the obstacle at a half-apex angle of 25°. In the bottom of the chute, the upstream average value of τ /σzz is approximately 0.36, and a maximum stress ratio close to 0.75 is observed in front of the obstacle at a half-apex angle of 25°. For cylindrical obstacles, similar conclusions apply: the upstream average value of σxx/σzz is 1.0, and a maximum stress ratio close to 4.4 is observed in front of the obstacle at a chute angle of 20°. In the bottom of the chute, the upstream average value of τ /σzz is approximately 0.36, and a maximum stress ratio close to 0.76 is observed in front of the obstacle at a chute angle of 35°.
關鍵字(中) ★ 斜坡顆粒流
★ 楔型與圓柱障礙物
★ 離散元素模擬
★ 連體斜震波理論
★ 傳輸性質
★ 應力分佈
關鍵字(英) ★ granular chute flow
★ wedge-shaped and cylindrical obstacles
★ discrete element method
★ continuum theory of oblique shock wave
★ transport properties
★ stress distribution
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
附錄目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-3 研究動機 5
第二章 研究方法 6
2-1 離散元素法 6
2-1-1 運動方程式 6
2-1-2 接觸力模型 8
2-1-3 臨界時間步 10
2-2 模型建立與模擬架構 11
2-2-1 離散元素模型 11
2-2-2 降低模數法 12
2-3 顆粒流傳輸性質 13
2-3-1 平均速度 13
2-3-2 擾動速度 13
2-3-3 粒子溫度 14
2-4 顆粒流內部性質 15
2-4-1 粒子體積佔有率 15
2-4-2 平均配位數 15
2-4-3 摩擦啟動因子 16
2-4-4 應力計算 16
2-5 斜震波理論 18
2-6 正震波理論 19
第三章 結果與討論 26
3-1 障礙物尺寸與邊壁影響 26
3-1-1 楔型障礙物 26
3-1-2 圓柱障礙物 28
3-2 楔型障礙物對顆粒體在滑道中流動行為的影響 29
3-2-1 流動行為的分析 29
3-2-2 流動速度分佈與粒子溫度分佈 31
3-2-3 衝擊波型分析 32
3-2-4 顆粒滯留探討 33
3-3 圓柱障礙物對顆粒體在滑道中流動行為的影響 33
3-3-1 流動行為的分析 34
3-3-2 流動速度分佈與粒子溫度分佈 34
3-3-3 顆粒滯留探討 36
3-4 楔型障礙物對顆粒流的應力分析 36
3-4-1 流動方向正向應力 37
3-4-2 應力比 38
3-5 圓柱障礙物對顆粒流的應力分析 39
3-5-1 流動方向正向應力 39
3-5-2 應力比 40
第四章 結論 81
參考文獻 83
附錄 86
參考文獻 [1] T. Faug, Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines, Physical Review, 92 (2015) 062310.
[2] W.R. Cui, J.G. Chen, W.Y. Zhao, X.Q. Chen, Characteristics of wake morphology during debris flow when passing a cylindrical obstacle, Physics of Fluids, 35.11 (2023) 116604.
[3] A. Pasqua, A. Leonardi, M. Pirulli, Comparison of depth-averaged and 3D models for dense granular flows, IOP Conference Series: Earth and Environmental Science, (2021) 012101.
[4] R. Zhang, D. Su, Y.J. Jiang, H. Xiong, W. Han, X. Chen, Influence of topography on the impact mechanism of dry granular flow: a DEM study, Powder Technology, 416 (2023) 118216.
[5] A.M. Abdelrazek, I. Kimura, Y. Shimizu, Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method, Journal of Glaciology, 62 (2016) 335-347.
[6] Z. Chen, D. Rickenmann, Y. Zhang, S. He, Effects of obstacle′s curvature on shock dynamics of gravity-driven granular flows impacting a circular cylinder, Engineering Geology, 293 (2021) 106343.
[7] I. Redaelli, C. Prisco, F. Calvetti, Dry granular masses impacting on rigid obstacles: numerical analysis and theoretical modelling, Acta Geotechnica, 16 (2021) 3923-3946.
[8] S.B. Savage, Granular flows down rough inclines-review and extension, Studies in Applied Mechanics, 7 (1983) 261-282.
[9] P. A. CUNDALL, O. D. L. STRACK, A discrete numerical model for granular assemblies, geotechnique, 29 (1979) 47-65.
[10] Y.C. Tai, J.M.N.T. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions, Ann. Glaciol., 32 (2001) 281-284.
[11] M.C. Chiou, Y. Wang, K. Hutter, Influence of obstacles on rapid granular flows, Acta Mechanica, 175 (2005) 105-122.
[12] B. Domnik, S.P. Pudasaini, R. Katzenbach, S.A. Miller, Coupling of full two-dimensional and depth-averaged models for granular flows, Journal of Non-Newtonian Fluid Mechanics, 201 (2013) 56-68.
[13] H. Teufelsbauer, Y. Wang, M.C. Chiou, W. Wu, Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment, Granular Matter, 11 (2009) 209-220.
[14] T. Faug, R. Beguin, B. Chanut, Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows, Physical Review, 80 (2009) 021305.
[15] H. Teufelsbauer, Y. Wang, S.P. Pudasaini, R.I. Borja, W. Wu, DEM simulation of impact force exerted by granular flow on rigid structures, Acta Geotechnica 6 (2011) 119-133.
[16] S.H. Chou, L.S. Lu, S.S. Hsiau, DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles, Granular Matter, 14 (2012) 719-732.
[17] Hakonardottir, K. Martha, A. J. Hogg, Oblique shocks in rapid granular flows, Physics of fluids, 17 (2005) 077101.
[18] Cui, Xinjun, J. M. N. T. Gray, T. Johannesson, Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland, Journal of Geophysical Research: Earth Surface, 112 (2007) F4.
[19] J. Gray, X. Cui, Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows, Journal of Fluid Mechanics, 579 (2007) 113-136.
[20] S.P. Pudasaini, K. Hutter, S.S. Hsiau, S.C. Tai, Y .Wang, R. Katzenbach, Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Physics of fluids, 19 (2007) 053302.
[21] T. Heinze, A highly flexible laboratory setup to demonstrate granular flow characteristics: With special emphasize on education and science communication, Natural Hazards, 104 (2020) 1581-1596.
[22] X. Cui, M. Harris, M. Howarth, D. Zealey, R. Brown, Jonny Shepherd, Granular flow around a cylindrical obstacle in an inclined chute, Physics of Fluids, 34 (2022) 093308.
[23] Y. Jaiswal, A. Khan, R. Kumar, S. Kumar, Shocked confined-granular flow over obstacles, Journal of Fluid Mechanics, 960 (2023) A21.
[24] X. Cui, Strong oblique shock waves in granular free-surface flows, Physics of Fluids, 33 (2021) 083302.
[25] S.P. Pudasaini, C. Kroner, Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results, Physical Review, 78 (2008) 041308.
[26] J. Gray, Y.C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, Journal of Fluid Mechanics, 491 (2003) 161-181.
[27] C. Tregaskis, C.G. Johnson, X. Cui, J. Gray, Subcritical and supercritical granular flow around an obstacle on a rough inclined plane, Journal of Fluid Mechanics, 933 (2022) A25.
[28] A. Khan, P. Hankare, S. Verma, Y. Jaiswal, R. Kumar, S. Kumar, Detachment of strong shocks in confined granular flows, Journal of Fluid Mechanics, 935 (2022) A13.
[29] A.K. Mathews, A. Khan, B. Sharma, S. Kumar, R. Kumar, A numerical investigation of granular shock waves over a circular cylinder using the discrete element method, Journal of Fluid Mechanics, 936 (2022) A11.
[30] A. Albaba, S. Lambert, F. Nicot, B. Chareyre, Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling, Granular Matter, 17 (2015) 603-616.
[31] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Applied Mathematical Modelling, 74 (2019) 540-568.
[32] C. Thornton, C. Randall, Applications of theoretical contact mechanics to solid particle system simulation, J. Appl. Mech., 20 (1988) 133-142.
[33] Y.C. Chung, T.C. Kuo, S.S. Hsiau, Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- Part I: Exploration of transport properties, Powder Technology, 400 (2022) 117220.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2024-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明