博碩士論文 111323089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.209.158
姓名 賴思樺(Szu-Hua Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 加氨改善甲烷固態氧化物燃料電池之碳沉積問題
(Using ammonia to improve the carbon deposition problem of a methane solid oxide fuel cell)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-29以後開放)
摘要(中) 本論文針對使用甲烷燃料之鈕扣型陽極支撐固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC),研究在陽極端燃料加氨對碳沉積之影響效應。我們量測相關電池極化曲線和電化學阻抗頻譜,以及進行120小時穩定性測試。實驗後並使用X光繞射(X-Ray Diffraction, XRD) 、能量色散X射線譜 (Energy Dispersive X-Ray, EDX)及掃描式電子顯微鏡(Scanning Electron Microscope, SEM),來探討甲烷加氨對碳沉積和電池微結構之影響。實驗條件含三種操作溫度T = 700, 750, 800℃,陰極固定使用200 sccm的空氣,陽極分別獨立通入兩種燃料:(1) 50 sccm CH4 + 50 sccm NH3 + 50 sccm N2和(2) 50 sccm CH4 + 75 sccm H2 + 75 sccm N2。其中(2)加氫燃料僅進行750℃之實驗,目的是與(1)加氨燃料在750℃之結果做對比,因文獻上認為鎳基陽極觸媒(Ni catalyst)在750℃時可100%裂解氨成氫和氮,故可探討氨氣是否完全裂解?以及加氨或加氫對甲烷燃料電池性能是如何地影響?結果顯示:(1)甲烷加氨,在750℃時,可以有效抑制碳沉積,其電池性能於穩定性測試期間(120小時),在固定800 mAcm^-2電流負載下,可輸出穩定運行約680 mWcm^-2之功率密度。XRD及EDX檢測到的碳元素多寡會受溫度高低及操作時間長短所影響,溫度越高及操作時間越長觀測到之碳元素就越多。由SEM影像,顯示甲烷之碳沉積會破壞陽極微結構,進而使電池壽命明顯劣化,劣化程度於800℃最嚴重,而於750℃無劣化(在120小時穩定性測試期間,電池輸出功率為常數)。當操作溫度750℃和在0.68V條件下,甲烷混氨及甲烷混氫的電池性能分別為767 mW cm^-2和696 mW cm^-2,前者優於後者。這應是因為甲烷及氨氣進行反應時會吸熱,因此推測氨氣並未100%裂解成氫和氮,還有少量氨氣未完全裂解,進而佔據陽極酸性位點,發揮抑制甲烷碳沉積之影響,使甲烷混氨的性能高於甲烷混氫。綜上,所得結果顯示加氨在750℃時,相對於700℃和800℃條件下,對甲烷碳沉積有最佳之改善效果。
摘要(英) This thesis experimentally investigates the carbon deposition problem of a button methane-fueled anode-supported solid oxide fuel cell (SOFC) by using ammonia as a blending fuel. We measure the fuel cell polarization curves and electrochemical impedance spectra; a 120-hour stability test is also performed. Post-experiment analyses are conducted using X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), and Scanning Electron Microscopy (SEM) to understand the effects of blending ammonia on carbon deposition and the variations of cell microstructures. The experimental conditions included three operating temperatures: 700°C, 750°C, and 800°C, where the cathode is supplied with a constant 200 sccm of air and the anode is independently fed by two types of fuel. (1) 50 sccm CH? + 50 sccm NH? + 50 sccm N? and (2) 50 sccm CH? + 75 sccm H? + 75 sccm N?. The second fuel mixture (methane-hydrogen) is tested only at 750°C to compare with the methane-ammonia results at the same temperature, since the literature suggests that the Ni-based anode catalyst can fully decompose ammonia into hydrogen and nitrogen at 750°C. This allowed us to investigate whether ammonia is fully decomposed or not and how ammonia or hydrogen affects the performance of the methane-fueled SOFC. Results show that the blending ammonia at 750°C can effectively suppress the carbon deposition. During the 120-hour stability test, the cell exhibits a stable performance at approximately 680 mW cm?2 under a constant current load of 800 mA cm?2. The amount of carbon detected by XRD and EDX increases with increasing temperature and operating time. SEM images reveal that the carbon deposition mainly produced by the methane cracking reaction can deteriorate the anode microstructure, significantly shortening the cell longevity, with the most severe degradation occurring at 800°C, while no degradation is observed at 750°C (the power output remains constant throughout the 120-hour stability test). At 750°C and 0.68 V, the power densities for methane-ammonia and methane-hydrogen mixtures are respectively 767 mW cm?2 and 696 mW cm?2. The former mixture has a better power density than the latter. This may be due to the endothermic reaction of methane-ammonia mixture, where ammonia does not 100% decompose into hydrogen and nitrogen, leaving a small amount of ammonia that could occupy Lewis acid sites of the anode and suppress the carbon deposition. In conclusion, the aforesaid results show that blending ammonia at 750°C offers the best improvement in mitigating the carbon deposition problem in comparison with the conditions at 700°C and 800°C.
關鍵字(中) ★ 氨氣
★ 甲烷
★ 固態氧化物燃料電池
★ 電池性能
★ 穩定性測試
關鍵字(英) ★ ammonia
★ methane
★ solid oxide fuel cell
★ cell performance
★ stability test
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
符號說明 xi
第一章 前言 1
1.1 研究動機 1
1.2 研究問題簡述 3
1.3 可能的解決方法 4
1.4 論文綱要 5
第二章 文獻回顧 6
2.1 SOFC運作原理及基本介紹 6
2.2使用甲烷混氨及甲烷混氫之相關研究 12
2.3使用甲烷作為主燃料之相關研究 15
2.3.1 過去本實驗室研究資料整理 15
2.3.2 其他文獻整理 21
2.4使用氨氣作為主燃料之相關研究 28
2.4.1 過去本實驗室研究資料整理 28
2.4.2 其他文獻整理 37
2.5使用其他碳氫燃料之相關研究 41
第三章 實驗設備與量測方法 46
3.1 高壓SOFC實驗平台 46
3.2 實驗流程與量測操作參數設計 52
第四章 結果與討論 55
4.1 甲烷混氨於溫度效應之量測與分析 55
4.2 甲烷混氨對比甲烷混氫之量測與分析 60
4.3 甲烷混氨於不同溫度之性能穩定性研究 63
第五章 結論與未來工作 70
5.1 結論 70
5.2 未來工作 70
參考文獻 71
參考文獻 [1] T. Spencer, L. Cozzi, V. G. Tapia, A. Roge, S. Bouckaert, O. Joy, J. Mullen, “CO2 Emissions in 2023 - A new record high, but is there light at the end of the tunnel”, International Energy Agency, 3 (2024). https://iea.blob.core.windows.net/assets/33e2badc-b839-4c18-84ce-f6387b3c008f/CO2Emissionsin2023.pdf.
[2] “112年彰化縣政府淨零政策資訊 - 世界各國淨零目標、碳關稅”, 彰化縣政府, 10 (2023). https://personnel.chcg.gov.tw/03bulletin/bulletin03_con.aspx?bull_id=382378.
[3] Y. Ando, H. Oozawa, M. Mihara, H. Irie, Y. Urashita, T. Ikegami, “Demonstration of SOFC - Micro gas turbine (MGT) hybrid systems for commercialization”, Mitsubishi Heavy Industries Technical Review 52 (2015) 47-52.
[4] K. Tomida, K. Kodo, D. Kobayashi, Y. Kato, S. Suemori, Y. Urashita, “Efforts toward introduction of SOFC - MGT hybrid system to the market”, Mitsubishi Heavy Industries Technical Review 55 (2018) 1-5.
[5] M. Tomberg, M. P. Heddrich, M. Metten, S. A. Ansar, K. A. Friedrich, “Operation of a solid oxide fuel cell reactor with multiple stacks in a pressured system with fuel gas recirculation”, Energy Technology 10 (2022) 2101075.
[6] B. Wang, M. Ni, K. Jiao, “Green ammonia as a fuel”, Science Bulletin 67 (2022) 1530–1534.
[7] M. A. Buccheri, A. Singh, J. M. Hill, “Anode - versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane”, Journal of Power Sources 196 (2011) 968-976.
[8] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao, “Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes”, Journal of Power Sources 240 (2013) 232-240.
[9] B. Stoeckl, M. Preininger, V. Suboti?, C. Gaber, M. Seidl, P. Sommersacher, H. Schroettner, C. Hochenauer, “High utilization of humidified ammonia and methane in solid oxide fuel cells: an experimental study of performance and stability”, Journal of The Electrochemical Society 166 (2019) F774-F783.
[10] K. Teramoto, H. Iwai, M. Kishimoto, T. Kawaguchi, M. Takemoto, M. Saito, H. Yoshida, “Direct reforming of MethaneeAmmonia mixed fuel on Ni-YSZ anode of solid oxide fuel cells”, International Journal of Hydrogen Energy 45 (2020) 8965-8974.
[11] A. R. Hartwell, C. A. Wilhelm, T. S. Welles, R. J. Milcarek, J. Ahn, “Effects of synthesis gas concentration, composition, and operational time on tubular solid oxide fuel cell performance”, Sustainability 14 (2022) 7983.
[12] 詹彥信, “固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究”, 國立中央大學 碩士論文 2014年 6月.
[13] 梁俊德, “加壓型 SOFC 碳沉積之實驗研究”, 國立中央大學 碩士論文 2015年 9月.
[14] 王稚元, “加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響”, 國立中央大學 碩士論文 2021年 6月.
[15] 陳尚緯, “加濕模擬垃圾掩埋氣固態氧化物燃料電池之性能與穩定性量測”, 國立中央大學 碩士論文 2022年 11月.
[16] 游政泓, “陰極氧濃度效應於不同溫度甲烷固態氧化物燃料電池影響之實驗研究”, 國立中央大學 碩士論文 2022年 12月.
[17] G. Yang, Y. Li, J. Sang, A. Wu, J. Yang, T. Liang, J. Xu, W. Guan, M. Chai, S. C. Singhal, “In-situ analysis of anode atmosphere in a flat-tube solid oxide fuel cell operated with dry reforming of methane”, Journal of Power Sources 533 (2022) 231246.
[18] L. Fan, C. Li, P. V. Aravind, W. Cai, M. Han, N. Brandon, “Methane reforming in solid oxide fuel cells: Challenges and strategies”, Journal of Power Sources 538 (2022) 231573.
[19] R. Wang, T. Wang, Y. Ma, T. Wei, Z. Ye, B. Chen, D. Dong, “Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface”, Journal of Power Sources 544 (2022) 231854.
[20] R. Maric, G. Mirshekari, “Solid ozide fuel cells from fundamental principles to complete systems”, Chemical Rubber Company Press (2021).
[21] H.W. Chang, C.M. Huang, S.S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors”, Journal of Power Sources 250 (2014) 21-29.
[22] Y.D. Hsieh, Y.H. Chan, S.S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte supported planar solid oxide fuel cells”, Journal of Power Sources 299 (2015) 1-10.
[23] V.A.C. Haanappel, M.J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ”, Journal of Power Sources 171 (2007) 169-178.
[24] 吳佩真, “加壓鈕扣型陽極支撐 SOFC 實驗量測與活化和濃度過電位分析計算”, 國立中央大學 碩士論文 2013年 6月.
[25] P.C. Wu, S.S. Shy, “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850 oC”, Journal of Power Sources 362 (2017) 105-114.
[26] T. Matsui, T. Fujinaga, R. Shimizu, T. Ozeki, H. Muroyama, K. Eguchi, “Degradation behavior of solid oxide fuel cells operated at high fuel utilization”, Journal of The Electrochemical Society 168 (2021) 104509.
[27] M. Gallo, P. Polverino, J. Mougin, B. Morel, C. Pianese, “Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction☆”, Applied Energy 279 (2020) 115718.
[28] Y. Wang, J. Shi, X. Gu, O. Deutschmann, Y. Shi, N. Cai, “Toward mobility of solid oxide fuel cells”, Progress in Energy and Combustion Science 102 (2024) 101141.
[29] A. N. Zainon, M. R. Somalu, A. M. K. Bahrain, A. Muchtar, N. A. Baharuddin, S.A. M. Ali, N. Osman, A. A. Samat, A. K. Azad, N. P. Brandon, “Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: a review”, International Journal of Hydrogen Energy 48 (2023) 20441-20464.
[30] 劉庭耀, “氨固態氧化物燃料電池實驗研究”, 國立中央大學 碩士論文 2022年 1月.
[31] 徐?修, “氨 SOFC 之實驗研究:陽極支撐與電解質支撐電池性能之比較”, 國立中央大學 碩士論文 2016年 11月.
[32] 謝昇均, “加壓型氨固態氧化物燃料電池之實驗研究”, 國立中央大學 碩士論文 2018年 1月.
[33] 洪藝庭, “加壓型氨固態氧化物燃料電池之性能和穩定性量測”, 國立中央大學 碩士論文 2018年 10月.
[34] 王證亮, “加壓型合成氣固態氧化物燃料電池加氨之實驗研究:電池性能與穩定性量測”, 國立中央大學 碩士論文 2020年 1月.
[35] 趙健傑, “以氨和氫為燃料之加壓平板和鈕扣型固態氧化物燃料電池性能量測”, 國立中央大學 碩士論文 2020年 1月.
[36] 呂育緯, “熱循環、添加氫氣、加壓效應還原氮化鎳對平板型氨氣SOFCs之效應”, 國立中央大學 碩士論文 2021年 1月.
[37] 李秉霙, “添加氨氣的合成氣固態氧化物燃料電池性能與穩定性實驗研究”, 國立中央大學 碩士論文 2021年 1月.
[38] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells”, Journal of Power Sources 305 (2016) 72-79.
[39] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K.Eguchi, “Development of NieBa(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells”, Journal of Power Sources 365 (2017) 148-154.
[40] S.S. Shy, S.C. Hsieh, H.Y. Chang, “A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements”, Journal of Power Sources 396 (2018) 80-87.
[41] S. S. Shy, Y. T. Hung, Z. H. Chou, Z. L. Bong, J. J. Jhao, “Pressurized ammonia and syngas planar anode-supported solid oxide fuel cells and their performance stability test”, The Electrochemical Society Transactions 91 (2019) 745-752.
[42] Y.T. Hung, S.S. Shy, “A pressurized ammonia-fed planar anode supported solid oxide fuel cell at 1-5 atm and 750-850 oC and its loaded short stability test”, International Journal of Hydrogen Energy 45 (2020) 27597-27610.
[43] K. Selvam, Y. Komatsu , A. Sciazko , S. Kaneko , N. Shikazono, “Thermodynamic analysis of 100% system fuel utilization solid oxide fuel cell (SOFC) system fueled with ammonia”, Energy Conversion and Management 249 (2021) 114839.
[44] A. Omer, I. Rahimipetroudi, K. Rashid, J. B. Yang, J. E. Hong, S. K. Dong, “Design and performance optimization of a direct ammonia planar solid oxide fuel cell for high electrical efficiency”, Journal of Power Sources 573 (2023) 233135.
[45] A.G. Olabi, M. A. Abdelkareem, M. A.Murisi, N. Shehata, A. H. Alami, A. Radwan, T. Wilberforce, K.J. Chae, E. T. Sayed, “Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals”, Energy Conversion and Management 277 (2023) 116594.
[46] D. Oryshchyn, N. F. Harun, D. Tucker, K. M. Bryden, L. Shadle, “Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems”, Applied Energy 228 (2018) 1953-1965.
[47] F. Yilmaz, M. Ozturk, “Design and modeling of an integrated combined plant with SOFC for hydrogen and ammonia generation”, International Journal of Hydrogen Energy 47 (2022) 31911-31926.
[48] T. Meng, D. Cui, Y. Shi, Y. Ji, M. Cheng, B. Tu, Z. Lan, “Performance evaluation of high-efficiency SOFC PEMFC hybrid system fueled by liquid ammonia”, International Journal of Hydrogen Energy 48 (2023) 30887-30898.
[49] W. Ming, P. Sun, Z. Zhang, W. Qiu, J. Du, X. Li, Y. Zhang, G. Zhang, K. Liu, Y. Wang, X. Guo, “A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring”, International Journal of Hydrogen Energy 48 (2023) 5197-5228.
[50] J.H. Xu, B.X. Zhang, H.Z. Yan, Q. Ding, K.Q. Zhu, Y.R. Yang, T.M. Huang, S. Li, Z.M. Wan, X.D. Wang, “A comprehensive assessment of the hybrid power generation system of PEMFC and internal combustion engine based on ammonia decomposition”, Energy 285 (2023) 129559.
[51] F. Guo , C. Li , X. Xiu , K. Cheng , J. Qin, “Comprehensive technical analyses of a solid oxide fuel cell turbine-less hybrid aircraft propulsion system using ammonia and methane as alternative fuels”, Applied Thermal Engineering 230 (2023) 120787.
[52] F. N. Cayan, M. Zhi, S. R. Pakalapati, I. Celik, N. Wu, R. Gemmen, “Effects of coal syngas impurities on anodes of solid oxide fuel cells”, Journal of Power Sources 185 (2008) 595-602.
[53] A. Rafique, R. Raza, A. Ali, M. A. Ahmad, M. Syvajarvi, “An efficient carbon resistant composite Ni0.6Zn0.4O2-δ-GDC anode for biogas fuelled solid oxide fuel cell”, Journal of Power Sources 438 (2019) 227042.
[54] M. ?lba?, B. Kumuk, “Modeling and analysis of a model solid oxide fuel cell running on low calorific value coal gases”, International Journal of Hydrogen Energy 45 (2020) 3557-3583.
[55] Y. Chen, M. Lu, H. Yang, Y. Yao, T. Tao, S. Lu, C. Wang, R. Ramesh, M. Kendall, K. Kendall, X. Ouyang, B. Liang, “80 Hours operation of a tubular solid oxide fuel cell using propane/air”, Applied Energy 272 (2020) 115099.
[56] M. Dewa, M. A. Elharati, A. M. Hussain, Y. Miura, D. Song, Y. Fukuyama, Y. Furuya, N. Dale, X. Zhang, O. G. M.Flores, D. Wu, M. G. Norton, S. Ha, “Metal-supported solid oxide fuel cell system with infiltrated reforming catalyst layer for direct ethanol feed operation”, Journal of Power Sources 541 (2022) 231625.
[57] Y. Hu, C. Han, W. Li, Q. Hu, H. Wu, Z. Luo, “Experimental evaluation of methanol steam reforming reactor heated by catalyst combustion for kW-class SOFC”, International Journal of Hydrogen Energy 48 (2023) 4649-4664.
[58] M. Hober, B. Konigshofer, P. Bo?koski, C. Hochenauer, V. Suboti?, “Diesel operated combined heat and power SOFC system: SOFC characterization and proof of concept”, Journal of Power Sources 585 (2023) 233635.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2024-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明