參考文獻 |
[1] T. Spencer, L. Cozzi, V. G. Tapia, A. Roge, S. Bouckaert, O. Joy, J. Mullen, “CO2 Emissions in 2023 - A new record high, but is there light at the end of the tunnel”, International Energy Agency, 3 (2024). https://iea.blob.core.windows.net/assets/33e2badc-b839-4c18-84ce-f6387b3c008f/CO2Emissionsin2023.pdf.
[2] “112年彰化縣政府淨零政策資訊 - 世界各國淨零目標、碳關稅”, 彰化縣政府, 10 (2023). https://personnel.chcg.gov.tw/03bulletin/bulletin03_con.aspx?bull_id=382378.
[3] Y. Ando, H. Oozawa, M. Mihara, H. Irie, Y. Urashita, T. Ikegami, “Demonstration of SOFC - Micro gas turbine (MGT) hybrid systems for commercialization”, Mitsubishi Heavy Industries Technical Review 52 (2015) 47-52.
[4] K. Tomida, K. Kodo, D. Kobayashi, Y. Kato, S. Suemori, Y. Urashita, “Efforts toward introduction of SOFC - MGT hybrid system to the market”, Mitsubishi Heavy Industries Technical Review 55 (2018) 1-5.
[5] M. Tomberg, M. P. Heddrich, M. Metten, S. A. Ansar, K. A. Friedrich, “Operation of a solid oxide fuel cell reactor with multiple stacks in a pressured system with fuel gas recirculation”, Energy Technology 10 (2022) 2101075.
[6] B. Wang, M. Ni, K. Jiao, “Green ammonia as a fuel”, Science Bulletin 67 (2022) 1530–1534.
[7] M. A. Buccheri, A. Singh, J. M. Hill, “Anode - versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane”, Journal of Power Sources 196 (2011) 968-976.
[8] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao, “Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes”, Journal of Power Sources 240 (2013) 232-240.
[9] B. Stoeckl, M. Preininger, V. Suboti?, C. Gaber, M. Seidl, P. Sommersacher, H. Schroettner, C. Hochenauer, “High utilization of humidified ammonia and methane in solid oxide fuel cells: an experimental study of performance and stability”, Journal of The Electrochemical Society 166 (2019) F774-F783.
[10] K. Teramoto, H. Iwai, M. Kishimoto, T. Kawaguchi, M. Takemoto, M. Saito, H. Yoshida, “Direct reforming of MethaneeAmmonia mixed fuel on Ni-YSZ anode of solid oxide fuel cells”, International Journal of Hydrogen Energy 45 (2020) 8965-8974.
[11] A. R. Hartwell, C. A. Wilhelm, T. S. Welles, R. J. Milcarek, J. Ahn, “Effects of synthesis gas concentration, composition, and operational time on tubular solid oxide fuel cell performance”, Sustainability 14 (2022) 7983.
[12] 詹彥信, “固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究”, 國立中央大學 碩士論文 2014年 6月.
[13] 梁俊德, “加壓型 SOFC 碳沉積之實驗研究”, 國立中央大學 碩士論文 2015年 9月.
[14] 王稚元, “加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響”, 國立中央大學 碩士論文 2021年 6月.
[15] 陳尚緯, “加濕模擬垃圾掩埋氣固態氧化物燃料電池之性能與穩定性量測”, 國立中央大學 碩士論文 2022年 11月.
[16] 游政泓, “陰極氧濃度效應於不同溫度甲烷固態氧化物燃料電池影響之實驗研究”, 國立中央大學 碩士論文 2022年 12月.
[17] G. Yang, Y. Li, J. Sang, A. Wu, J. Yang, T. Liang, J. Xu, W. Guan, M. Chai, S. C. Singhal, “In-situ analysis of anode atmosphere in a flat-tube solid oxide fuel cell operated with dry reforming of methane”, Journal of Power Sources 533 (2022) 231246.
[18] L. Fan, C. Li, P. V. Aravind, W. Cai, M. Han, N. Brandon, “Methane reforming in solid oxide fuel cells: Challenges and strategies”, Journal of Power Sources 538 (2022) 231573.
[19] R. Wang, T. Wang, Y. Ma, T. Wei, Z. Ye, B. Chen, D. Dong, “Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface”, Journal of Power Sources 544 (2022) 231854.
[20] R. Maric, G. Mirshekari, “Solid ozide fuel cells from fundamental principles to complete systems”, Chemical Rubber Company Press (2021).
[21] H.W. Chang, C.M. Huang, S.S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors”, Journal of Power Sources 250 (2014) 21-29.
[22] Y.D. Hsieh, Y.H. Chan, S.S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte supported planar solid oxide fuel cells”, Journal of Power Sources 299 (2015) 1-10.
[23] V.A.C. Haanappel, M.J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ”, Journal of Power Sources 171 (2007) 169-178.
[24] 吳佩真, “加壓鈕扣型陽極支撐 SOFC 實驗量測與活化和濃度過電位分析計算”, 國立中央大學 碩士論文 2013年 6月.
[25] P.C. Wu, S.S. Shy, “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850 oC”, Journal of Power Sources 362 (2017) 105-114.
[26] T. Matsui, T. Fujinaga, R. Shimizu, T. Ozeki, H. Muroyama, K. Eguchi, “Degradation behavior of solid oxide fuel cells operated at high fuel utilization”, Journal of The Electrochemical Society 168 (2021) 104509.
[27] M. Gallo, P. Polverino, J. Mougin, B. Morel, C. Pianese, “Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction☆”, Applied Energy 279 (2020) 115718.
[28] Y. Wang, J. Shi, X. Gu, O. Deutschmann, Y. Shi, N. Cai, “Toward mobility of solid oxide fuel cells”, Progress in Energy and Combustion Science 102 (2024) 101141.
[29] A. N. Zainon, M. R. Somalu, A. M. K. Bahrain, A. Muchtar, N. A. Baharuddin, S.A. M. Ali, N. Osman, A. A. Samat, A. K. Azad, N. P. Brandon, “Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: a review”, International Journal of Hydrogen Energy 48 (2023) 20441-20464.
[30] 劉庭耀, “氨固態氧化物燃料電池實驗研究”, 國立中央大學 碩士論文 2022年 1月.
[31] 徐?修, “氨 SOFC 之實驗研究:陽極支撐與電解質支撐電池性能之比較”, 國立中央大學 碩士論文 2016年 11月.
[32] 謝昇均, “加壓型氨固態氧化物燃料電池之實驗研究”, 國立中央大學 碩士論文 2018年 1月.
[33] 洪藝庭, “加壓型氨固態氧化物燃料電池之性能和穩定性量測”, 國立中央大學 碩士論文 2018年 10月.
[34] 王證亮, “加壓型合成氣固態氧化物燃料電池加氨之實驗研究:電池性能與穩定性量測”, 國立中央大學 碩士論文 2020年 1月.
[35] 趙健傑, “以氨和氫為燃料之加壓平板和鈕扣型固態氧化物燃料電池性能量測”, 國立中央大學 碩士論文 2020年 1月.
[36] 呂育緯, “熱循環、添加氫氣、加壓效應還原氮化鎳對平板型氨氣SOFCs之效應”, 國立中央大學 碩士論文 2021年 1月.
[37] 李秉霙, “添加氨氣的合成氣固態氧化物燃料電池性能與穩定性實驗研究”, 國立中央大學 碩士論文 2021年 1月.
[38] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells”, Journal of Power Sources 305 (2016) 72-79.
[39] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K.Eguchi, “Development of NieBa(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells”, Journal of Power Sources 365 (2017) 148-154.
[40] S.S. Shy, S.C. Hsieh, H.Y. Chang, “A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements”, Journal of Power Sources 396 (2018) 80-87.
[41] S. S. Shy, Y. T. Hung, Z. H. Chou, Z. L. Bong, J. J. Jhao, “Pressurized ammonia and syngas planar anode-supported solid oxide fuel cells and their performance stability test”, The Electrochemical Society Transactions 91 (2019) 745-752.
[42] Y.T. Hung, S.S. Shy, “A pressurized ammonia-fed planar anode supported solid oxide fuel cell at 1-5 atm and 750-850 oC and its loaded short stability test”, International Journal of Hydrogen Energy 45 (2020) 27597-27610.
[43] K. Selvam, Y. Komatsu , A. Sciazko , S. Kaneko , N. Shikazono, “Thermodynamic analysis of 100% system fuel utilization solid oxide fuel cell (SOFC) system fueled with ammonia”, Energy Conversion and Management 249 (2021) 114839.
[44] A. Omer, I. Rahimipetroudi, K. Rashid, J. B. Yang, J. E. Hong, S. K. Dong, “Design and performance optimization of a direct ammonia planar solid oxide fuel cell for high electrical efficiency”, Journal of Power Sources 573 (2023) 233135.
[45] A.G. Olabi, M. A. Abdelkareem, M. A.Murisi, N. Shehata, A. H. Alami, A. Radwan, T. Wilberforce, K.J. Chae, E. T. Sayed, “Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals”, Energy Conversion and Management 277 (2023) 116594.
[46] D. Oryshchyn, N. F. Harun, D. Tucker, K. M. Bryden, L. Shadle, “Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems”, Applied Energy 228 (2018) 1953-1965.
[47] F. Yilmaz, M. Ozturk, “Design and modeling of an integrated combined plant with SOFC for hydrogen and ammonia generation”, International Journal of Hydrogen Energy 47 (2022) 31911-31926.
[48] T. Meng, D. Cui, Y. Shi, Y. Ji, M. Cheng, B. Tu, Z. Lan, “Performance evaluation of high-efficiency SOFC PEMFC hybrid system fueled by liquid ammonia”, International Journal of Hydrogen Energy 48 (2023) 30887-30898.
[49] W. Ming, P. Sun, Z. Zhang, W. Qiu, J. Du, X. Li, Y. Zhang, G. Zhang, K. Liu, Y. Wang, X. Guo, “A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring”, International Journal of Hydrogen Energy 48 (2023) 5197-5228.
[50] J.H. Xu, B.X. Zhang, H.Z. Yan, Q. Ding, K.Q. Zhu, Y.R. Yang, T.M. Huang, S. Li, Z.M. Wan, X.D. Wang, “A comprehensive assessment of the hybrid power generation system of PEMFC and internal combustion engine based on ammonia decomposition”, Energy 285 (2023) 129559.
[51] F. Guo , C. Li , X. Xiu , K. Cheng , J. Qin, “Comprehensive technical analyses of a solid oxide fuel cell turbine-less hybrid aircraft propulsion system using ammonia and methane as alternative fuels”, Applied Thermal Engineering 230 (2023) 120787.
[52] F. N. Cayan, M. Zhi, S. R. Pakalapati, I. Celik, N. Wu, R. Gemmen, “Effects of coal syngas impurities on anodes of solid oxide fuel cells”, Journal of Power Sources 185 (2008) 595-602.
[53] A. Rafique, R. Raza, A. Ali, M. A. Ahmad, M. Syvajarvi, “An efficient carbon resistant composite Ni0.6Zn0.4O2-δ-GDC anode for biogas fuelled solid oxide fuel cell”, Journal of Power Sources 438 (2019) 227042.
[54] M. ?lba?, B. Kumuk, “Modeling and analysis of a model solid oxide fuel cell running on low calorific value coal gases”, International Journal of Hydrogen Energy 45 (2020) 3557-3583.
[55] Y. Chen, M. Lu, H. Yang, Y. Yao, T. Tao, S. Lu, C. Wang, R. Ramesh, M. Kendall, K. Kendall, X. Ouyang, B. Liang, “80 Hours operation of a tubular solid oxide fuel cell using propane/air”, Applied Energy 272 (2020) 115099.
[56] M. Dewa, M. A. Elharati, A. M. Hussain, Y. Miura, D. Song, Y. Fukuyama, Y. Furuya, N. Dale, X. Zhang, O. G. M.Flores, D. Wu, M. G. Norton, S. Ha, “Metal-supported solid oxide fuel cell system with infiltrated reforming catalyst layer for direct ethanol feed operation”, Journal of Power Sources 541 (2022) 231625.
[57] Y. Hu, C. Han, W. Li, Q. Hu, H. Wu, Z. Luo, “Experimental evaluation of methanol steam reforming reactor heated by catalyst combustion for kW-class SOFC”, International Journal of Hydrogen Energy 48 (2023) 4649-4664.
[58] M. Hober, B. Konigshofer, P. Bo?koski, C. Hochenauer, V. Suboti?, “Diesel operated combined heat and power SOFC system: SOFC characterization and proof of concept”, Journal of Power Sources 585 (2023) 233635. |