博碩士論文 110353040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.216.188
姓名 丁驊俊(Ding,Hua-Jun)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 射出成型壓力指標對於體積收縮率的影響評估:實驗與模擬比較
(Evaluation of the volumetric shrinkage impacted by injection molding pressure indices : measurement and simulation)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關
★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究★ 槍機卡榫模流分析參數最佳化之研究
★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在透過在模具上安裝傳感器來收集成型過程中熔膠壓力變化的資訊,並將每個階段壓力分別以不同指標代替,研究中使用五項壓力指標(保壓階段壓力指標、最大壓力指標、總壓力指標、冷卻壓力變化指標、殘餘壓降指標)來表示不同階段的壓力變化,五項指標將用來說明不同階段實驗數據與模擬數據間的差距,以及探討射出成型過程中不同階段的壓力,對於不均勻體積收縮率的影響。
在實驗與Moldex3D模擬結果的對比分析中可看出,保壓階段壓力差距為24.79 % ~32.18 %,壓力最大值差距為58.84 %~65.08 %,透過進一步比較發現是因為響應曲線不同造成的差距,在冷卻階段壓力變化模擬與實際較為相接近。比較不同階段對於不均勻性體積收縮發現,總壓力指標對於不均勻體積收縮率的皮爾森相關係數為-0.68,該值為五項指標中最大。冷卻壓力變化指標排在第二,保壓階段壓力指標則是排在第三,最大壓力指標、殘餘壓降指標對於不均勻體積收縮率關係性較不明顯,表明射出成型過程中總壓力是最為影響不均勻體積收縮,而個別階段壓力中,影響最為明顯的是冷卻階段。
摘要(英) This study collected information on the pressure changes of the melt during the molding process by installing sensors on the mold. Different indices represented the pressure at each stage. Five pressure indices (First-stage holding pressure index,Peak pressure index,Pressure integral index,Cooling pressure index and Residual pressure drop index) were used to describe the pressure changes at different stages. These indices were employed to explain the discrepancies between experimental data and simulation data at various stages and to explore the effect of pressure during the injection molding process on the non-uniform volumetric shrinkage rate.
In the comparative analysis between the experimental results and the Moldex3D simulation results, it was found that the pressure difference during the holding stage ranged from 24.79% to 32.18%. Additionally, the maximum pressure difference ranged from 58.84% to 65.08%. Further comparisons revealed that differences in the response curves caused these discrepancies. During the cooling stage, the pressure change in the simulation was closer to the actual results. When comparing the effect of different stages on non-uniform volumetric shrinkage, the Pearson correlation coefficient of the Pressure integral index with the non-uniform volumetric shrinkage rate was -0.68, making it the largest among the five indices. Cooling pressure index ranked second, while First-stage holding pressure index ranked third regarding their impact on non-uniform volumetric shrinkage. At the same time, Peak pressure index and Residual pressure drop index showed less correlation with the non-uniform volumetric shrinkage rate. This indicates that the total pressure during the injection molding process greatly affects non-uniform volumetric shrinkage. The cooling stage pressure had the most significant impact on the individual stages.
關鍵字(中) ★ 射出成型
★ Moldex3D
★ 壓力指標
★ 體積收縮率
關鍵字(英) ★ Injection Molding
★ Moldex3D
★ pressure indices
★ volumetric shrinkage
論文目次 摘要 i
Abstract ii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 6
1-4 研究架構 7
第二章 基本原理與理論模式 8
2-1 射出成型原理 8
2-1-1 充填階段 8
2-1-2 保壓階段 9
2-1-3 冷卻階段 9
2-2 塑件之收縮、體積收縮率特性 9
2-2-1 比容計算公式 10
2-2-2 收縮性質量化公式 11
2-3 壓力指標 12
2-4 模擬和實際差異 14
2-5 相關性分析 14
2-6 實驗設計法 15
2-7 機台設定 18
第三章 研究方法 25
3-1 實驗材料 25
3-2 實驗設備 27
3-3 量測設備 34
3-4 製程參數規劃 39
3-5 實驗設計 42
第四章 結果與討論 44
4-1 基於壓力指標的實驗與模擬數據對比分析 44
4-2 壓力指標對於不均勻體積收縮的關係性 53
4-3 模擬軟體中壓力曲線和實驗壓力曲線比較 68
4-4 壓力階段大小對於不均勻體積變化的影響 75
第五章 結論與未來展望 77
5-1 結論 77
5-2 未來展望 78
參考文獻 79
參考文獻 [1] Y. Liau, H. Lee, and K. Ryu, "Digital Twin concept for smart injection molding," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 324: IOP Publishing, p. 012077.
[2] C. Verbraak and H. Meijer, "Screw design in injection molding," Polymer Engineering & Science, vol. 29, no. 7, pp. 479-487, 1989.
[3] S.-C. Nian, Y.-C. Fang, and M.-S. Huang, "In-mold and machine sensing and feature extraction for optimized IC-tray manufacturing," Polymers, vol. 11, no. 8, p. 1348, 2019.
[4] P. Xie, F. Guo, Z. Jiao, Y. Ding, and W. Yang, "Effect of gate size on the melt filling behavior and residual stress of injection molded parts," Materials & Design, vol. 53, pp. 366-372, 2014.
[5] M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, "Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products," Materials & Design, vol. 30, no. 8, pp. 3217-3224, 2009.
[6] G. Gordon, D. O. Kazmer, X. Tang, Z. Fan, and R. X. Gao, "Quality control using a multivariate injection molding sensor," The International Journal of Advanced Manufacturing Technology, vol. 78, no. 9, pp. 1381-1391, 2015/06/01 2015, doi: 10.1007/s00170-014-6706-6.
[7] K. Marschall and G. H. Gautschi, "In-process monitoring with piezoelectric sensors," Journal of Materials Processing Technology, vol. 44, no. 3, pp. 345-352, 1994/08/01/ 1994, doi: https://doi.org/10.1016/0924-0136(94)90448-0.
[8] A. Bendada, A. Derdouri, M. Lamontagne, and Y. Simard, "Analysis of thermal contact resistance between polymer and mold in injection molding," Applied Thermal Engineering, vol. 24, no. 14, pp. 2029-2040, 2004/10/01/ 2004, doi: https://doi.org/10.1016/j.applthermaleng.2003.12.027.
[9] R. Vashisht and A. Kapila, "A comparative study of coolants based on the cooling time of injection molding," Int J Emerg Technol Adv Eng, vol. 4, no. 6, pp. 830-834, 2014.
[10] Y. Wang, K.-M. Yu, and C. C. Wang, "Spiral and conformal cooling in plastic injection molding," Computer-Aided Design, vol. 63, pp. 1-11, 2015.
[11] H. Wang, K. Kabanemi, and G. Salloum, "Numerical and experimental studies on the ejection of injection?molded plastic products," Polymer Engineering & Science, vol. 40, no. 3, pp. 826-840, 2000.
[12] D. V. Stan, "Considerations on the drying of the raw material and consequences on the quality of the injected products," Materiale Plastice, vol. 57, no. 1, pp. 46-56, 2020.
[13] M. Lay, N. L. N. Thajudin, Z. A. A. Hamid, A. Rusli, M. K. Abdullah, and R. K. Shuib, "Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding," Composites Part B: Engineering, vol. 176, p. 107341, 2019.
[14] J. Wang, C. Hopmann, C. Kahve, T. Hohlweck, and J. Alms, "Measurement of specific volume of polymers under simulated injection molding processes," Materials & Design, vol. 196, p. 109136, 2020.
[15] S. Liao et al., "Optimal process conditions of shrinkage and warpage of thin?wall parts," Polymer Engineering & Science, vol. 44, no. 5, pp. 917-928, 2004.
[16] M. Azaman, S. Sapuan, S. Sulaiman, E. Zainudin, and A. Khalina, "Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding," Materials & Design (1980-2015), vol. 52, pp. 1018-1026, 2013.
[17] S. M. Mukras, H. M. Omar, and F. A. al-Mufadi, "Experimental-based multi-objective optimization of injection molding process parameters," Arabian Journal for Science and Engineering, vol. 44, pp. 7653-7665, 2019.
[18] J. Greener, "Pressure?Induced densification in injection molding," Polymer Engineering & Science, vol. 26, no. 8, pp. 534-542, 1986.
[19] M. Srivastava, S. Maheshwari, T. K. Kundra, and S. Rathee, "Multi-Response Optimization of Fused Deposition Modelling Process Parameters of ABS Using Response Surface Methodology (RSM)-Based Desirability Analysis," Materials Today: Proceedings, vol. 4, no. 2, Part A, pp. 1972-1977, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.matpr.2017.02.043.
[20] H. Zhou, S. Zhang, and Z. Wang, "Multi-objective optimization of process parameters in plastic injection molding using a differential sensitivity fusion method," The International Journal of Advanced Manufacturing Technology, vol. 114, pp. 423-449, 2021.
[21] 柯坤呈、黃明賢, "智慧射出成型之人工智慧品質檢測," 模具與成型智慧工廠雜誌, no. 049, pp. 40 - 45, 2021.
[22] Y. Wu, Y. Gong, K. J. Cha, and J. M. Park, "Effect of microstructures on the shrinkage of injection molding product," Journal of Mechanical Science and Technology, vol. 33, pp. 1357-1363, 2019.
[23] H.-S. Peng, P.-W. Huang, K.-F. Liew, P.-C. Chien, and W.-J. Su, "Study of CAE predictive analytics on structure design, molding and improved strength of plastic injection molded parts," in 2017 International Conference on Applied System Innovation (ICASI), 2017: IEEE, pp. 546-549.
[24] R. Chang, C. Chen, and K. Su, "Modifying the tait equation with cooling?rate effects to predict the pressure–volume–temperature behaviors of amorphous polymers: Modeling and experiments," Polymer Engineering & Science, vol. 36, no. 13, pp. 1789-1795, 1996.
[25] K.-C. Ke and M.-S. Huang, "Quality prediction for injection molding by using a multilayer perceptron neural network," Polymers, vol. 12, no. 8, p. 1812, 2020.
[26] M. Gregor, P. Grznar, S. Mozol, and L. Mozolova, "Design of simulation experiments using Central Composite Design," Acta Simulatio, vol. 9, no. 2, 2023.
[27] A. De Leon, M. Kidd, and A. Corzo, "Box-Behnken Design: alternative multivariate design in broiler nutrition research," World′s poultry science journal, vol. 66, no. 4, pp. 699-706, 2010.
[28] 台中精機. "台中精機射出成型機規格資訊." https://www.victortaichung.com/injection-machines/tw/vsp-60-e.htm (accessed 2 August, 2024).
[29] 晏邦電機工業有限公司. "料斗乾燥機(HD/IHD/DHD)." https://www.yannbang.com/hopper-dryer-tw (accessed 2 August, 2024).
[30] 潤輝科技有限公司. "AO系列油式溫度控制機規格表." https://amax.ecatalog.com.tw/ecatalog/2/ (accessed 2 August, 2024).
[31] Futaba雙葉. "模內量測系統." https://www.tw-futaba.com.tw/zh-tw/%E5%95%86%E5%93%81%E6%9C%8D%E5%8B%99/%E5%B0%84%E5%87%BA-%E6%B2%96%E5%A3%93%E6%88%90%E5%9E%8B/%E6%A8%A1%E5%85%A7%E9%87%8F%E6%B8%AC%E7%B3%BB%E7%B5%B1 (accessed 2 August, 2024).
[32] 林顥耘, "應用二階反應曲面法探討射出成型參數對於ABS試片之體積收縮率最佳化," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2022.
指導教授 鍾禎元(Chung, Chen-Yuan) 審核日期 2024-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明