博碩士論文 109383610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.140.254.100
姓名 游狄歐(Pradiktio Putrayudanto)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(An Algorithmic Approach to Generate Hexahedral Mesh on Thin-shell Models by Recognizing Face Type and Decomposing Volume)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 薄殼零件通常因為其複雜的幾何結構而採用模具製造或鑄造技術。這些零件的厚度與寬度(或長度)比通常較小,並且具有突起特徵以增強其機械性能。然而,由於薄殼結構的複雜性,使用傳統有限元素法進行模擬會面臨挑戰。儘管四面體網格元素能夠處理複雜的幾何形狀,但與六面體網格元素相比,其計算成本較高。即便如此,目前的六面體網格生成演算法仍然限於較簡單的基本形狀,且手動體積分解方法—雖然在某些情況下有效—卻可能引入錯誤。本研究旨在解決自動化薄殼結構六面體網格生成的挑戰,提出一種能夠有效處理複雜幾何結構的演算法。此過程首先是對模型進行分類,並識別薄殼零件每個面類型。薄殼模型根據幾何形狀和拓撲結構可分為規則型和不規則型。完成分類後,演算法會生成簡化幾何形狀並有助於體積分解的(cap face)。本研究還引入了突起特徵圖(Protrusion Feature Graph, PFG),以協助有效地生成這些蓋面。接著,通過利用蓋面進行模型的分割與合併,生成子體積。本研究提出了兩種六面體網格生成方案:一種是使用 CUBIT,另一種是使用 Moldex3D。CUBIT 允許完全自動化生成六面體網格,無需進行額外的幾何編輯;而 Moldex3D 提供了類似的過程,但目前僅限於單一來源和單一目標方案。為了測試演算法的效能,本研究提出了35個面類型識別的測試案例以及8個體積分解與網格生成的測試案例,涵蓋各種幾何形狀和拓撲結構。
摘要(英) Thin-shell parts are often produced using molding or casting techniques due to their complex geometry. These parts typically feature a small thickness-to-width (or length) ratio and include protrusions that enhance their mechanical properties. However, simulating such thin-shell structures using traditional finite element methods is challenging due to their complexity. While tetrahedral mesh elements can accommodate complex geometries, they come with a high computational cost compared to hexahedral meshes. Despite this, current hex mesh generation algorithms are limited to simpler, primitive shapes, and manual volume decomposition—while effective in some cases—can introduce errors. This research addresses the challenge of automating hexahedral mesh generation for thin-shell structures by proposing an algorithmic approach that effectively handles complex geometries. The process begins with classifying the model and identifying face types for each face of the thin-shell part. Thin-shell models are classified into regular and irregular categories based on their geometry and topology. Once classification is complete, the algorithm generates "cap faces" that simplify the geometry and aid in volume decomposition. A protrusion feature graph (PFG) is also introduced to help create these cap faces efficiently. The model is then split and merged using the cap faces to generate subvolumes. Two schemes for hex mesh generation are proposed: one using CUBIT and the other using Moldex3D. CUBIT allows for fully automated hex mesh generation without requiring additional geometry edits, while Moldex3D offers a similar process, though it is currently limited to single-source, single-target schemes. To test the algorithm′s performance, 35 test cases for face type recognition and 8 test cases for volume decomposition and mesh generation, covering a range of geometries and topologies, are presented.
關鍵字(中) ★ 薄殼部件
★ 劃分
★ cap face
★ 六面體網格
關鍵字(英) ★ thin-shell part
★ decomposition
★ cap face
★ hex mesh
論文目次 TABLE OF CONTENTS
提要 i
ABSTRACT ii
LIST OF FIGURES vi
LIST OF TABLES xi
EXPLANATION OF SYMBOLS xii
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Recognizing face types 2
1.2.2 Decomposing volume 4
1.2.3 Constructing solid hex mesh 6
1.3 Proposed Study 6
1.4 Research method 7
1.4.1 Preliminary computation 10
1.4.2 Face type recognition 10
1.4.3 Subvolume generation 12
1.4.4 Mesh Generation 12
1.5 Dissertation Structure 14
CHAPTER II FACE TYPES RECOGNITION 16
2.1 Inner and outer regions separation 19
2.1.1 Initial categorization 19
2.1.2 Group category evaluation 21
2.1.3 Transition edge construction 22
2.1.4 Further evaluation of segregating inner/outer region 25
2.2 Applying transition face types 27
2.3 Classifying thin-shell model 35
2.4 Assigning inner face type for regular model 37
2.4.1 Wall face type recognition 39
2.4.2 Bottom face type recognition 40
2.4.3 Step-wall face type recognition 42
2.4.4 Protrusion face type recognition 43
2.5 Assigning Surface Attributes for irregular model 46
2.5.1 Classifying the type of irregular model 46
2.5.2 First type of irregular model face attributes 47
2.5.3 Second type of irregular model face attributes 47
2.5.4 Third type of irregular model face attributes 47
CHAPTER III VOLUME DECOMPOSITION 50
3.1 Cap face generation 50
3.1.1 Overview of cap face 50
3.1.2 Group face data for cap face 54
3.1.3 Vertex component of cap face 55
3.1.4 Edge component of cap face 61
3.1.5 Face component of cap face 64
3.1.6 Overview of protrusion feature graph 65
3.1.7 Composing protrusion feature graph 68
3.2 Sub-volume generation 79
3.2.1 Stage one decomposition 81
3.2.2 Stage two decomposition 82
CHAPTER IV MESH GENERATION 88
4.1 Mesh generation using CUBIT 88
4.2 Proposed method for mesh generation 89
4.2.1 The framework of the proposed method 89
4.2.2 The sweepability check 94
4.2.3 Determining node location using map algorithm 95
4.2.4 Determining node location using submap algorithm 95
4.2.5 Hex mesh generation using Moldex3D 98
CHAPTER V RESULTS & DISCUSSION 99
5.1 The results of face type recognition 99
5.2 Results of subvolumes decomposition 104
5.3 Results of mesh generation 106
CHAPTER VI CONCLUSION 133
6.1 Conclusion 133
6.2 Future work 135
REFERENCE 136
參考文獻 [1] T. Schneider, Y. Hu, X. Gao, J. Dumas, D. Zorin and D. Panozzo, “A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with the finite element method.” ACM Trans. Graph., Vol 41(3), 2022, pp. 1-14.
[2] R. Biswas and R.C. Strawn, “Tetrahedral and hexahedral mesh adaptation for CFD problems.” Appl. Numer. Math., Vol 26, 1998, pp. 135–151.
[3] S. Joshi and T. C. Chang, “Graph-based heuristics for recognition of machined features from a 3D solid model.” Comput. Aided Des., Vol 20(2), 1988, pp. 58–66.
[4] J. Corney and D. E. R. Clark, “Method for finding holes and pockets that connect multiple faces in 2 1/2D objects.” Comput. Aided Des., Vol 23(10), 1991, pp. 658–668.
[5] E. Bruzzone and L. D. Floriani, “Extracting adjacency relationships from a modular boundary model.” Comput. Aided Des., Vol 23(5), 1991, pp. 344–355.
[6] T. Lim, H. Medellin, C. Torres-Sanchez, J. R. Corney, J. M. Ritchie and J.B.C Davies, “Edge-based identification of DP-features on free-form solids.” IEEE Trans. Pattern Anal. Mach. Intell., Vol 27(6), 2005, pp. 851–860.
[7] D.L Waco and Y. S. Kim, “Geometric reasoning for machining features using convex decomposition.” Comput. Aided Des., Vol 26(6), 1994, pp. 477–489.
[8] H. Sakurai and P. Dave, “Volume decomposition and feature recognition, Part II: curved objects.” Comput. Aided Des., Vol 28(6–7), 1996, pp. 519–537.
[9] Y. Woo and S. H. Kim, “Protrusion recognition from solid model using orthogonal bounding factor.” J. Mech. Sci. Technol., Vol 28(5), 2014, pp. 1759–1764.
[10] A. B. Abdulghafour and A. T. Hassan, “Feature Recognition of Freeform Surfaces for CAD/CAM Integration,” in 2019 IEEE International Conference on Electrical, Control and Instrumentation Engineering, ICECIE 2019 - Proceedings, Nov. 2019.
[11] D. C. Nolan, C. M. Tierney, C. G. Armstrong, T. T. Robinson and J. E. Makem, “Automatic dimensional reduction and meshing of stiffened thin-wall structures.” Eng. Comput., Vol 30, 2013, pp. 689–701.
[12] T. T. Robinson, C. G. Armstrong and R. Fairey, “Automated mixed dimensional modelling from 2D and 3D CAD models.” Finite Elem. Anal. Des., Vol 47(2), 2011, pp. 151–165.
[13] J. E. Makem, C. G. Armstrong, T. T. Robinson, (2014) “Automatic decomposition and efficient semi-structured meshing of complex solids.” Eng. Comput., Vol 30, 2014, pp. 689–701.
[14] L. Sun, C. M. Tierney, C. G. Armstrong and T. T. Robinson, “Automatic decomposition of complex thin-walled CAD models for hexahedral dominant meshing.” Proc. Eng., Vol 163, 2016, pp. 225–237.
[15] L. Sun, C. M. Tierney, C. G. Armstrong and T. T Robinson, “An enhanced approach to automatic decomposition of thin-walled components for hexahedral-dominant meshing.” Eng. Comput., Vol 34, 2018, pp. 431–447.
[16] Y. Lu, R. Gadh, T. J. Tautges, “Feature based hex meshing methodology: feature recognition and volume decomposition.” Comput. Aided Des., Vol 33(3), 2001, pp. 221–232.
[17] S. Kwon, D. Mun, B. C. Kim, S. Han and H. Suh, “B-rep model simplification using selective and iterative volume decomposition to obtain finer multi-resolution models.” Comput. Aided Des., Vol 112, 2019, pp. 23–34.
[18] S. S. Liu and R. Gadh, “Basic logical bulk shapes (BLOBs) for finite element hexahedral mesh generation to support virtual prototyping.” J. Manuf. Sci. Eng., Vol 120(4), 1998, pp. 728–735.
[19] S. S. Liu and R. Gadh, “Automatic hexahedral mesh generation by recursive convex and swept volume decomposition.” In: 6th International Meshing Roundtable, 1997.
[20] M. Lai, S. Benzley and D. White, “Automated hexahedral mesh generation by generalized multiple sources to multiple targets sweeping.” Int. J. Numer. Meth. Engng., Vol 49, 2000, pp. 261–275.
[21] K. Miyoshi and T. D. Blacker, “Hexahedral mesh generation using multi-axis cooper algorithm.” In: 9th International Meshing Roundtable, 2000.
[22] M. A. Scott, S. E. Benzley and S. J. Owen, “Improved many-to-one sweeping.” Int. J. Numer. Meth. Engng., Vol 65, 2006, pp. 332–349.
[23] C. K. Chan and S. T. Tan, “Volume decomposition of CAD models for rapid prototyping technology.” Rapid Prototyp J., Vol 11(4), 2005, pp. 221–234.
[24] H. Wu, S. Gao, R. Wang and J. Chen, “Fuzzy clustering based pseudo-swept volume decomposition for hexahedral meshing.” Comput Aided Des, Vol 96, 2018, pp. 42–58.
[25] B. Lecallard et al., “Automatic hexahedral-dominant meshing for decomposed geometries of complex components,” Comput Aided Des Appl, Vol 16(5), 2019, pp. 846–863.
[26] H. L. Lockett and M. D. Guenov, “Graph-based feature recognition for injection moulding based on a mid-surface approach,” CAD Computer Aided Design, Vol 37(2), 2005, pp. 251–262.
[27] T. K. H. Tam and C. G. Armstrong, “2D finite element mesh generation by medial axis subdivision.” Adv Eng Softw, Vol 13(5–6), 1991, pp. 313–324.
[28] D. P. Sheen, T. G. Son, D. K. Myung, S. H. Lee, K. Lee and T. J. Yeo, “Transformation of a thin-walled solid model into a surface model via solid deflation.” Comput Aided Des, Vol 42, 2010, pp. 720–730.
[29] J. H. C. Lu, I. Song, W. R. Quadros and K. Shimada, “Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing.” Eng Comput, Vol 30, 2014, pp. 237–252.
[30] E. C. Sheerbroke, N. M. Patrikalakis and E. Brisson, “An algorithmfor the medial axis transform of 3D polyhedral solids.” IEEE TransVis Comput Graph, Vol 2(1), 1996, pp. 44–61.
[31] M. Ramanathan and B. Gurumoorthy, “Interior medial axis transform computation of 3D objects bound by free-form surfaces.” Comput Aided Des, Vol 42(12), 2010, pp. 1217–1231.
[32] H. Zhu, Y. Shao, Y. Liu and J. Zhao, “Automatic hierarchical midsurface abstraction of thin-walled model based on rib decomposition.” Adv Eng Softw, Vol 97, 2016, pp. 60–71.
[33] D. R. White, L. Mingwu, S. E. Benzley, G. D. Sjaardema, “Automated hexahedral mesh generation by virtual decomposition”, 1995.
[34] Y. Su, K. H. Lee and A. S. Kumar, “Automatic hexahedral mesh generation using a new grid-based method with geometry and mesh transformation.” Comput Methods Appl Mech Eng, Vol 194(39–41), 2005, pp. 4071–4096.
[35] H. Wu, S. Gao, R. Wang and M. Ding, “A global approach to multi-axis swept mesh generation.” Procedia Eng., Vol 203, 2017, pp. 414–426.
[36] D. R. White, S. Saigal and S. J. Owen, “CCSweep: Automatic decomposition of multi-sweep volumes.” Eng Comput, Vol 20(3), 2004, pp. 222–236.
[37] S. Cai and T. J. Tautges, “One-to-one sweeping based on harmonic S-T mappings of facet meshes and their cages.” Eng Comput, 2015, Vol 31, pp. 439–452.
[38] C. V. Nielsen, J. L. M. Fernandes and P. A. F. Martins, “All-hexahedral meshing and remeshing for multi-object manufacturing applications,” CAD Computer Aided Design, vol. 45(5), 2013, pp. 911–922.
[39] R. Wang, Z. Zheng, W. Yu, Y. Shao, and S. Gao, “Structure-aware geometric optimization of hexahedral mesh,” CAD Computer Aided Design, vol. 138, 2021, pp. 103050.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2024-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明