博碩士論文 111323158 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.119.248.54
姓名 徐浚祐(Hsu-Chun-Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微粒子珠擊對MIM 4140機械性質與顯微組織之影響研究
(Study on the effect of shot peening on the mechanical properties and microstructure of MIM 4140)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關
★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究★ 槍機卡榫模流分析參數最佳化之研究
★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-1以後開放)
摘要(中) 本研究選用BASF-Catamold MIM 4140 (42CrMo4)之金屬粉末作為射出材料,並射出拉伸試棒,在經過五個不同溫度進行燒結處理,隨後測量拉伸試棒之密度挑選出適合的燒結溫度,再進行均質化處理,以提高材料硬度、耐磨性和內部均勻性。接著,將拉伸試棒分為未珠擊和已珠擊兩個種類,透過珠擊條件變化,進行Hv硬度測試。根據Hv硬度測試結果,利用田口法進行最佳化實驗設計,選出最佳實驗組。最終,對拉伸試棒進行珠擊後滲氮熱處理、僅滲氮熱處理、淬火與回火後珠擊再滲氮熱處理和淬火與回火接續滲氮熱處理,隨後進行Hv硬度測試和拉伸試驗,以比較其Hv硬度、微觀結構和拉伸性質。
實驗結果顯示,為了減少淨零碳排需求,從密度測試中挑選出適合的燒結溫度為1340 ℃。在均質化處理後,經過珠擊後的拉伸試棒,由硬度測試(熱處理前)的結果得知,Hv硬度值在深度0.1 mm處會隨著珠擊條件中的粒徑、壓力與時間的增加而增加。透過硬度測試(滲氮熱處理前)的Hv硬度值進行田口法最佳化,得出的最佳組合為L18(21×32)直交表中的第18組。經過僅滲氮處理的試棒以及淬火與回火接續滲氮處理的試棒,表面硬度皆顯著提升,而先珠擊後進行滲氮熱處理能進一步提升表面硬度,從硬度結果(滲氮熱處理後)得知,相比僅進行滲氮熱處理,先珠擊後滲氮熱處理的試棒硬度可提升約113%;相比僅進行淬火與回火接續滲氮熱處理,先淬火與回火後珠擊再滲氮熱處理的試棒硬度可提升約59%。由於這兩種處理方法對試棒硬度均可提升超過50%,若將目前滲氮熱處理的六小時縮短50%即三小時,其硬度仍可與原來製程時間的硬度相當,而依據硬度的需求可以選擇不同的珠擊條件,從而減少能源消耗與碳排放,有助於實現節能減碳的目標。最後,由拉伸試驗結果得知,兩種滲氮熱處理的抗拉強度與延伸率之最高與最低分別為未珠擊組別與L18組別18,其中,在淬火與回火後接續滲氮熱處理未珠擊組別中的降伏強度、抗拉強度與延伸率表現最為均衡,分別為1015.7 MPa、1197.8 MPa與7.6 %,由該組別達到了所制定的目標,適合需要優良機械性質而不需提升表面硬度的應用。
摘要(英) This study used BASF-Catamold MIM 4140 (42CrMo4) metal powder as the injection material. Tensile samples were injected and sintered at five different temperatures. Then, the density of the samples was measured to select the suitable sintering temperature and homogenize the samples to improve the hardness, abrasion resistance, and uniformity of the internal distribution of the material. Next, the test bars were divided into two categories, without shot peened and shot peened, for shot peening tests and Hv hardness tests. Based on the results of the Hv hardness tests, Taguchi′s method was used to optimize the experimental design and select the best experimental group. Finally, the test bars were subjected to nitriding heat treatment after shot peening, nitriding heat treatment only, quenching and tempering followed by shot peening before nitriding heat treatment, and quenching and tempering followed by nitriding heat treatment, subsequently, Hv hardness testing was conducted. Finally, tensile testing was used to get the ultimate strength, and then the microstructure was observed at crack.
The experimental results showed that a suitable sintering temperature of 1340°C was selected from the density test to minimize the need for net zero carbon emissions. The hardness test results (before heat treatment) found that the Hv hardness value at a depth of 0.1 mm increases with increasing grain size, pressure, and time in the shot peening condition. Taguchi′s method of optimizing the Hv hardness values from the hardness test (before heat treatment) resulted in the optimum combination of group 18 in the L18 (21×32) orthogonal array. The surface hardness of the nitrided test bars and the quenched-and-tempered test bars both increased significantly. Additionally, nitriding heat treatment after shot peening further increased surface hardness. According to the hardness results (after nitriding), the hardness of the shot peening test bars increased by approximately 113% compared to nitriding alone, and by about 59% compared to the quenched-and-tempered test bars. When comparing quenching and tempering followed by nitriding with the combination of shot peening and nitriding after quenching and tempering, the latter improved hardness by approximately 59%. Since both treatments increase the hardness of the test bars by more than 50%, shortening the current nitriding heat treatment time by 50% (to 3 hours) could still achieve comparable hardness to the original process. Additionally, different shot peening conditions can be selected based on hardness requirements, reducing energy consumption and carbon emissions, and helping to achieve the goal of energy conservation and carbon reduction.
Finally, the tensile test results showed that the highest and lowest tensile strength and elongation in the two nitriding treatments were found in the without-shot-peened group and the L18 group 18, respectively. In particular, the yield strength, tensile strength, and elongation in the without-shot-peened group of the nitriding treatment after quenching and tempering were the most balanced, with respective values of 1015.7 MPa, 1197.8 MPa and 7.6 %. This makes it the most suitable for applications requiring hardening, meeting the targets for applications that demand excellent mechanical properties without needing to further increase surface hardness.
關鍵字(中) ★ 金屬粉末射出成型
★ 微粒子珠擊
★ 滲氮熱處理
★ Hv硬度試驗
★ 拉伸試驗
關鍵字(英) ★ Metal injection molding
★ Shot peening
★ Nitriding heat treatment
★ Vickers hardness test
★ Tensile test
論文目次 中文摘要 I
ABSTRACT VI
致謝 VIII
目錄 IX
圖目錄 XIII
表目錄 XVI
第1章、 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 金屬粉末射出成型應用槍枝零件文獻 2
1-2-2 微粒子珠擊法文獻 3
1-2-3 滲氮熱處理文獻 5
1-2-4 燒結溫度對拉伸試驗影響文獻 5
1-3 研究動機與目的 6
1-4 研究流程 8
第2章、 基本原理 10
2-1 MIM 4140 10
2-2 金屬粉末射出成型(MIM)製程技術 11
2-2-1 金屬粉末射出成型(MIM)製程 11
2-2-2 粉末之選擇 12
2-2-3 黏結劑之選擇 13
2-2-4 混練 14
2-2-5 射出成型 14
2-2-6 脫脂 15
2-2-7 燒結 16
2-3 均質化處理 16
2-4 實驗設計 17
2-5 田口法 17
2-5-1 直交表 18
2-6 珠擊原理 18
2-7 Hv硬度試驗 19
2-8 淬火熱處理 20
2-9 回火熱處理 20
2-10 滲氮法 21
第3章、 研究方法 23
3-1 實驗材料 23
3-1-1 金屬粉末 23
3-1-2 珠擊粉末 24
3-2 拉伸試棒設計 25
3-3 實驗設備 26
3-3-1 射出成型機 26
3-3-2 模溫機 28
3-3-3 真空脫蠟燒結爐 29
3-3-4 密度儀 31
3-3-5 珠擊設備 32
3-3-6 微小維克氏硬度計 32
3-3-7 ?式真空熱處理爐 34
3-3-8 拉伸試驗設備 34
3-4 製程規劃 37
3-4-1 射出成型製程 37
3-4-2 脫脂製程 38
3-4-3 燒結製程 38
3-4-4 均質化處理 38
3-4-5 密度測試 38
3-4-6 Hv硬度測試 39
3-4-7 淬火、回火與滲氮熱處理 40
3-5 實驗設計 40
第4章、 結果與討論 43
4-1 密度量測結果 43
4-2 Hv硬度測試結果(滲氮熱處理前) 44
4-2-1 未珠擊Hv硬度測試結果 44
4-2-2 珠擊(粒徑:50~80 μm) Hv硬度測試結果 46
4-2-3 珠擊(粒徑:80~140 μm) Hv硬度測試結果 48
4-2-4 珠擊時間的增加對硬度結果比較 50
4-3 田口法最佳化結果 50
4-4 Hv硬度測試結果(滲氮熱處理後) 53
4-4-1 僅滲氮熱處理和淬火與回火接續滲氮熱處理Hv硬度測試組別 54
4-4-2 僅滲氮熱處理和淬火與回火接續滲氮熱處理Hv硬度測試結果 54
4-5 拉伸試驗結果 58
4-5-1 拉伸試驗組別 58
4-5-2 僅滲氮熱處理以及淬火與回火接續滲氮熱處理拉伸試驗結果 60
4-6 僅滲氮熱處理以及淬火與回火接續滲氮熱處理SEM微觀結構結果 64
第5章、 結論與未來展望 72
5-1 結論 72
5-2 未來與展望 74
參考文獻 75
參考文獻 [1] Gonzalez-Gutierrez, J., G.B. Stringari, and I. Emri, Powder injection molding of metal and ceramic parts. Some critical issues for injection molding, 2012: p. 65-88.
[2] Torralba, J.M., J. Hidalgo, and A. Jimenez-Morales, Powder injection moulding: Processing of small parts of complex shape. International Journal of Microstructure and Materials Properties, 2013. 8(1/2): p. 87-96.
[3] Dominguez Perez, J., 42CrMo4 steel produced by metal injection molding. 2013.
[4] Vervoort, P., R. Vetter, and J. Duszczyk, Overview of powder injection molding. Advanced Performance Materials, 1996. 3: p. 121-151.
[5] Merhar, J., Overview of metal injection moulding. Metal Powder Report, 1990. 45(5): p. 339-342.
[6] Banerjee, S. and C. Joens, Debinding and sintering of metal injection molding (MIM) components, in Handbook of metal injection molding. 2019, Elsevier. p. 129-171.
[7] Ye, H., X.Y. Liu, and H. Hong, Fabrication of metal matrix composites by metal injection molding—A review. Journal of materials processing technology, 2008. 200(1-3): p. 12-24.
[8] Williams, N., Metal Injection Moulding in the firearms industry: a global perspective. PIM International, 2014. 8(4): p. 31-47.
[9] Terres, M.A., N. Laalai, and H. Sidhom, Effect of nitriding and shot-peening on the fatigue behavior of 42CrMo4 steel: Experimental analysis and predictive approach. Materials & Design, 2012. 35: p. 741-748.
[10] Tsuji, N., S. Tanaka, and T. Takasugi, Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surface and Coatings Technology, 2009. 203(10-11): p. 1400-1405.
[11] Wick, A., V. Schulze, and O. Vohringer, Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel. Materials Science and Engineering: A, 2000. 293(1-2): p. 191-197.
[12] Flori, M., et al., Influence of microstructure defects on the properties of 42CrMo4 nitrided steel. Annals of the Faculty of Engineering Hunedoara, 2011. 9(1): p. 141.
[13] Exner, H.E. and E. Arzt, Sintering processes. Sintering Key Papers, 1990: p. 157-184.
[14] Butkovic, S., et al., Effect of sintering parameters on the density, microstructure and mechanical properties of the niobium-modified heat-resistant stainless steel GX40CrNiSi25-20 produced by MIM technology. Materials and Technologies, 2012. 46: p. 185-190.
[15] Riofano, R.M., et al., Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding. Wear, 2008. 265(1-2): p. 57-64.
[16] Yang, M., Nitriding--Fundamentals, Modeling and Process Optimization. 2012, Worcester Polytechnic Institute Massachusetts.
[17] Freddi, A., et al., Introduction to the Taguchi method. Design principles and methodologies: from conceptualization to first prototyping with examples and case studies, 2019: p. 159-180.
[18] Hanza, S.S., et al., Corrosion behaviour of tempered 42CrMo4 steel. Materials and Technology, 2021. 55(3): p. 427–433-427–433.
[19] Hong, H., Roll pass design and simulation on continuous rolling of alloy steel round bar. Procedia Manufacturing, 2019. 37: p. 127-131.
[20] Thelning, K.-E., Steel and its heat treatment. 2013: Butterworth-heinemann.
[21] pdfcoffee.com_mpif-35-pdf"https://pdfcoffee.com/mpif-35-pdf-free.html".
[22] 均質化熱處理介紹, http://swcl.com.tw/content/tw/agent_products_cont.aspx?MSID=1072574072737152026.
[23] 珠擊主要功能和用途. https://xianfeng.com.tw/apply.html?num=2.
[24] Zou, N. and Q. Li. Microstructure and Hardness of Porous Magnesium Processed by Powder Metallurgy Using Polystyrene as the Space Holder. 2020. Cham: Springer International Publishing.
[25] Qvarnstrom, H., A mathematical formula for transformation between the steel hardness scales of Rockwell C and Vickers. Journal of Heat Treating, 1989. 7(1): p. 65-67.
[26] Chen, W., M. Xia, and W. Song, Study on the anti-friction mechanism of nitriding surface texture 304 steel. Coatings, 2020. 10(6): p. 554.
[27] 42CrMo4.https://baty-tenders.com/downloadable/download/attachment/id/1964/, C.m.
[28] F. Pelzoldt, a.M.M., Standards for Metal Injection Moulding: Progress to-date and future challenges, PIM International, vol. 11, No. 1, pp. 59-66, 2017.
[29] ARBURG_ALLROUNDER_320C_GOLDEN_EDITION_TD_681754_zh_TW.pdf.
[30] 水循環溫度控制機介紹"http://www.jieshen.com.tw/chanpin3.asp".
[31] 文生真空科技真空製程設備介紹. "http://www.vvt.com.tw/product.php?classid=3&id=14".
[32] 大型物整體密度測試儀TWS-1500E/2000E/3000E/6000E"https://www.group-up.com.tw/?92, E.A.A.E.E.B.E.A.E.B.E.A.
[33] 台灣中澤股份有限公司微小維克氏硬度計. "https://www.tn-testing.com.tw/%E5%BE%AE%E5%B0%8F%E7%B6%AD%E5%85%8B%E6%B0%8F%E7%A1%AC%E5%BA%A6%E8%A8%88/FM-110e.html".
[34] 8801伺服液壓疲勞試驗系統規格. "https://www.instron.cn/-/media/literature-library/products/2013/10/8801-fatigue-testing-system.pdf".
[35] Suharno, B., et al., Vacuum sintering process in metal injection molding for 17-4 ph stainless steel as material for orthodontic bracket. Solid State Phenomena, 2017. 266: p. 231-237.
[36] Berginc, B., Z. Kampus, and B. Sustarsic, The influence of MIM and sintering-process parameters on the mechanical properties of 316L SS. Materiali in Tehnologije, 2006. 40(5): p. 193.
[37] DUBE, C.L. and S. Khirwadkar, Evaluation of True Hardness of Tungsten by Micro Vickers Hardness Test. Institute for Plasma Research Library, IPR/TR-223, 2012.
[38] ASTM_E384-22"https://www.studocu.com/tw/document/chung-yuan-christian-university/engineering-materials/18astm-e384-22-astm-e384-22/72041066".
[39] Chen, K., et al., Effect of quenching and tempering temperature on microstructure and tensile properties of microalloyed ultra-high strength suspension spring steel. Materials Science and Engineering: A, 2019. 766: p. 138272.
[40] Chung, C.-Y. and Y.-C. Tzeng, Effects of Tempering Temperature on the Microstructure and Mechanical Properties of MIM-4605 High-Strength Low-Alloy Steel. JOM, 2022. 74(12): p. 4736-4745.
[41] Sirin, S.Y., K. Sirin, and E. Kaluc, Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel. Materials Characterization, 2008. 59(4): p. 351-358.
[42] Parrish, G., Carburizing: microstructures and properties. 1999: Asm International.
指導教授 鍾禎元(Chung-Chen-Yuan) 審核日期 2025-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明