博碩士論文 111323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.17.81.40
姓名 姚昱志(YU-CHIH YAO)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用撓性劍桿推梭創新技術於 桌上型織布機設計
(Application of Flexible-Rapier-Shuttle Innovative Technology in the Design of a Desktop Weaving Machine)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對原住民文化課程中的織布教學需求,設計一款體積小、機構複雜
度低且之緯線穩定性高的桌上型撓性劍桿推梭織布機,以促進文化傳承與教學創
新。撓性劍桿推梭創新設計結合梭織機低複雜度與撓性劍桿織機高穩定性的優勢,
並採用模糊自整定粒子群最佳化演算法(FST-PSO)最佳化設計打緯模組中共軛
凸輪,成功縮小機構體積。
研究涵蓋從機構模組化設計到快速原型開發的完整過程,使用熱熔堆疊 3D
列印技術降低製造成本並縮短開發周期。實驗結果驗證原型機的織布品質表現,
特別在緯線平整度與邊緣整齊度方面達到預期設計要求,幫助學習者將更多時間
投入圖騰設計與文化內涵的學習。
本研究提出的創新織布機設計,克服體積限制與織緯線穩定性需求,為小型
織布機設計提出創新解決方案。
摘要(英) This study addresses the weaving education needs of cultural courses for native
peoples by designing a desktop flexible-rapier-shuttle weaving machine characterized
by a compact size, low mechanical complexity, and high weft-insertion stability. The
innovative design combines the low complexity of traditional shuttle looms with the
high stability of flexible rapier looms. Additionally, the conjugate cams in the beating
up module was optimized using the Fuzzy Self-Tuning Particle Swarm Optimization
(FST-PSO) algorithm, effectively reducing the mechanism′s overall size.
The research encompasses the complete process from modular mechanism design
to rapid prototyping, utilizing Fused Deposition Modeling (FDM) 3D printing
technology to lower manufacturing costs and shorten development cycles. Experimental
results validate the prototype′s weaving performance, particularly meeting the expected
requirements for weft uniformity and edge alignment, enabling learners to dedicate more
time to designing patterns and exploring cultural meanings.
This study proposes an innovative weaving machine design that overcomes size
constraints and meets the demand for stable weft-insertion, offering a novel solution for
the development of compact weaving machines.
關鍵字(中) ★ 織布機
★ 梭織機
★ 劍桿織機
★ 共軛凸輪
★ 撓性劍桿
★ 梭子
★ 最佳化設計
關鍵字(英) ★ Weaving Machine
★ Shuttle Loom
★ Rapier Loom
★ Conjugate Cam
★ Flexible Rapier
★ Shuttle
★ Optimization Deign
論文目次 摘   要 ii
Abstract iii
目   錄 iv
圖 目 錄 vii
表 目 錄 xiv
第 1 章 緒論 1
1.1 研究背景 1
1.2 文獻分析 2
1.3 研究目標 5
1.4 論文架構 7
第 2 章 織布原理與機構分析 9
2.1 織布元件與織布步驟介紹 9
2.1.1 緯線、經線與織口介紹 9
2.1.2 織布元件介紹 11
2.1.3 織布階段與步驟介紹 17
2.2 織布方法介紹 22
2.3 織布機種類與織緯線方案分析 24
2.3.1 織布機種類介紹 24
2.3.2 織緯線機構複雜度、穩定度與體積分析 29
2.3.3 撓性劍桿推梭式織緯線方案 32
2.4 織布機機構功能、狀態與時序圖分析 34
2.4.1 織布機機構功能與狀態定義 34
2.4.2 機構時序圖 36
第 3 章 桌上型撓性劍桿推梭式織布機概念設計 39
3.1 基本設計規格 39
3.2 模組架構 42
3.3 模組作動時序圖與傳動鏈設計 45
3.4 模組設計要求 49
3.4.1 打緯模組設計要求 49
3.4.2 撓性劍桿推梭模組設計要求 50
3.4.3 提經模組設計要求 50
3.4.4 捲經模組設計要求 51
3.4.5 送布模組設計要求 52
第 4 章 打緯模組設計 53
4.1 打緯模組設計目標與架構 53
4.2 共軛凸輪設計流程與設計目標 57
4.3 共軛凸輪運動時序圖設計與運動曲線挑選 59
4.3.1 共軛凸輪運動時序圖設計 59
4.3.2 共軛凸輪運動曲線挑選 60
4.3.3 8次方多項式運動曲線 63
4.4 共軛凸輪輪廓計算與設計參數分析 66
4.4.1 共軛凸輪輪廓計算 66
4.4.2 共軛凸輪設計參數與間接參數分析 71
4.5 共軛凸輪最佳化設計 75
4.5.1 目標函數與限制條件 75
4.5.2 粒子群最佳化演算法(PSO)與懲罰函數 84
4.5.3 模糊推論系統(Fuzzy Inference System)概述 88
4.5.4 模糊自整定粒子群最佳化演算法(FST-PSO) 91
4.5.5 最佳化共軛凸輪設計結果 97
4.6 打緯模組設計結果 101
第 5 章 撓性劍桿推梭模組設計 103
5.1 撓性劍桿推梭模組概念設計 103
5.2 劍桿驅動次模組與劍桿收納次模組實體化設計結果 108
5.3 推梭器次模組實體化設計 111
5.4 撓性劍桿推梭模組設計結果與討論 113
第 6 章 整體機構具體化設計 117
6.1 桌上型撓性劍桿推梭織布機具體化設計結果 117
6.2 提經模組具體化設計 121
6.3 捲經模組與送布模組具體化設計結果 126
6.3.1 捲經模組具體化設計結果 126
6.3.2 送布模組具體化設計結果 128
第 7 章 織布品質測試與分析 130
7.1 織布實驗設計 130
7.2 織布品質指標 136
7.3 織布品質分析與討論 138
第 8 章 結論 142
第 9 章 參考文獻 143
參考文獻 [1] ?人哲 and ?明, "??机械??原理," ed, 1996.
[2] I. Thomas and J. Vincent, "1—AN EXPERIMENTAL STUDY OF SHUTTLE PROJECTION," Journal of the Textile Institute Transactions, vol. 40, no. 1, pp. T1-T29, 1949.
[3] U. S. Modi and B. Modi, "Design and Analysis of Picking Cam for High Speed Shuttle Loom," in National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, 2013.
[4] T. Ishida and A. Umeda, "Some attempts at reducing the noise of shuttle looms," Journal of the Textile Institute, vol. 78, no. 5, pp. 450-463, 1987.
[5] F. Hart, B. Patel, and J. Bailey, "Mechanical separation phenomena in picking mechanisms of fly-shuttle looms," 1976.
[6] P. Strubbe, "Gripper belt drive for a rapier weaving machine," Patent DE10346227B4, 2003-09-23, 2012.
[7] Y. He, S. W. Fei, Y. C. Chen, and B. Wang, "Research on Electric Weft Insertion Method for the Rapier Loom," Applied Mechanics and Materials, vol. 249, pp. 739-746, 2013.
[8] E. Verclyte, "TRANSFER GRIPPER FOR A RAPIER WEAVING LOOM," Patent US 7,128,098 B2 Patent Appl. 10/528,409, 2006.
[9] R. Eren and A. Aydemir, "An approach to kinematic design of four-bar sley drive mechanisms in weaving," The Journal of The Textile Institute, vol. 95, no. 1-6, pp. 193-205, 2004.
[10] J. Mrazek, "Theoretical analysis of dynamics of four-bar beat-up mechanism of a loom," Mechanism and machine theory, vol. 27, no. 3, pp. 331-341, 1992.
[11] A. Guha, C. Amarnath, M. Talukdar, and A. Manoj, "A novel mechanism for driving the sley in a shuttle loom," Journal of the Textile Institute, vol. 97, no. 6, pp. 513-518, 2006.
[12] H. Gu, "Investigation of Conjugate-cam Design for the Beat-up Mechanism," Journal of the Textile Institute, vol. 84, no. 3, pp. 387-393, 1993.
[13] L. Yang, J. Guoguang, W. Zhan, and S. Yanyan, "Dynamic characteristics analysis of conjugate cam beating-up mechanism of rapier loom," in 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 2020: IEEE, pp. 823-830.
[14] Y. Zhang and J.-H. Shin, "A computational approach to profile generation of planar cam mechanisms," J. Mech. Des., vol. 126, no. 1, pp. 183-188, 2004.
[15] L. Wu, "Calculating conjugate cam profiles by vector equations," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 217, no. 10, pp. 1117-1123, 2003.
[16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[17] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.
[18] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
[20] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN′95-international conference on neural networks, 1995, vol. 4: ieee, pp. 1942-1948.
[21] M. R. Bonyadi and Z. Michalewicz, "Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm," IEEE Transactions on Evolutionary Computation, vol. 20, no. 3, pp. 370-385, 2015.
[22] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive particle swarm optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009.
[23] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and G. Pasi, "Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization," Swarm and evolutionary computation, vol. 39, pp. 70-85, 2018.
[24] I. Tsiafis, S. Mitsi, K. Bouzakis, and A. Papadimitriou, "Optimal design of a cam mechanism with translating flat-face follower using genetic algorithm," Tribol Ind, vol. 35, no. 4, pp. 255-260, 2013.
[25] R. L. Norton, Cam Design and Manufacturing Handbook. Industrial Press Inc., 2009.
[26] H. A. Rothbart and D. L. Klipp, Cam design handbook. 2004.
[27] J.-L. Liu and J.-H. Lin, "Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization," Engineering Optimization, vol. 39, no. 3, pp. 287-305, 2007.
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2025-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明