參考文獻 |
[1] Anderson J.L., An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 2001, 129(12), 2884-2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
[2] Bencala K.E., Seinfeld J.H., Distributed parameter filtering: boundary noise and discrete observations, International Journal of Systems Science, 1979, 10(5), pp.493-512, https://doi.org/10.1080/00207727908941598
[3] Bishop C.H., Etherton B.J., Majumdar S.J., Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Monthly Weather Review, 2001, 129(3), 420-436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASW-TET>2.0.CO;2
[4] Burgers G., Jan van Leeuwen P., Evensen G., Analysis scheme in the Ensemble Kalman Filter, Monthly Weather Review, 1998, 126(6), pp.1719-1724, https://doi.org/10.11-75/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[5] Chen J.L., Wen J.C., Yeh T.C.J., Lin K.Y.A., Wang Y.L., Huang S.Y., Ma Y., Yu C.Y., Lee C.H., Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan, Journal of Hydrology, 2019, 569, 117-134, https://doi.org/10.1016/j.jhydrol.2018.11.064
[6] Chen Y., Zhang D., Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Advances in Water Resources, 2006, 29(8), 1107-1122, https://doi.org/10.1016/j.advwatres.2005.09.007
[7] Chen Z., Xu T., Gomez-Hernandez J.J., Zanini A., Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Sim-ultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter, Mathematical Geosciences, 2021, 53, 1587-1615, https://doi.org/10.1007/s11004-021-09928-y
[8] Cirpka O.A., Kitanidis P.K., Sensitivity of temporal moments calculated by the adjoint state method and joint inversing of head and tracer data, Advances in Water Resources, 2000, 24(1), 89-103, https://doi.org/10.1016/S0309-1708(00)00007-5
[9] Dagan G., Flow and Transport in Porous Formations, Springer-Verlag, Berlin, Heidelberg, 1989, https://link.springer.com/book/10.1007/978-3-642-75015-1
[10] Dagan G., Neuman S.P., Subsurface Flow and Transport: A Stochastic Approach, Cambridge University Press, Cambridge, Kingdom of England, 1997, https://doi.org/10.1017/CBO9780511600081
[11] Delhomme J. P., Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach, Water Resources Research, 1979, 15(2), 269-280, https://doi.org/10.1029/WR015i002p00269
[12] Eigbe U., Beck M.B., Wheater H.S., Hirano F., Kalman filtering in groundwater flow modelling: problems and prospects, Stochastic Hydrology and Hydraulics, 1998, 12, 15-32, https://doi.org/10.1007/s004770050007
[13] Erdal D., Cirpka O.A., Preconditioning an ensemble Kalman filter for groundwater flow using environmental tracer observations, Journal of Hydrology, 2017, 545, 42-54, https://doi.org/10.1016/j.jhydrol.2016.11.064
[14] Evensen G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans, 1994, 99(C5), 10143-10162, https://doi.org/10.1029/94JC00572
[15] Evensen G., The Ensemble Kalman Filter: theoretical formulation and practical implementation, Oceans Dynamics, 2003, 53, 343-367, https://doi.org/10.10-07/s10236-003-0036-9
[16] Evensen G., The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Systems Magazine, 2009, 29(3), 83-104, https://doi.org/10.1109/MCS.2009.932223
[17] Ferraresi M., Todini E., Vignoli R., A solution to the inverse problem in groundwater hydrology based on Kalman filtering, Journal of Hydrology, 1996, 175(1-4), 567-581, https://doi.org/10.1016/S0022-1694(96)80025-4
[18] Geer F.C.V., Kloet P.V.D., Two algorithms for parameter estimation in groundwater flow problems, Journal of Hydrology, 1985, 77(1-4), 361-378, https://doi.org/10.1016/0022-1694(85)90216-1
[19] Gelb A., Applied Optimal Estimation, MIT Press, Massachusetts, USA, 1974
[20] Gelhar L.W., Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, New Jersery, 1993
[21] Ghorbanidehno, H., Kokkinaki A., Lee J., Darve E., Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology, Journal of Hydrology, 2020, 591, 125266, https://doi.org/10.1016/j.jhydrol.20-20.125266
[22] Gharamti M.E., Hoteit I., Valstar J., Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering, Advances in Water Resources, 2013, 60, 75-88, https://doi.org/10.1016/j.advwatres.2013.07.011
[23] Graham W.D., McLaughlin D., Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments, Water Resources Research, 1989, 25(11), 2331-2355, https://doi.org/10.1029/WR025i011p02331
[24] Gu Y., Oliver D.S., An iterative ensemble Kalman filter for multiphase fluid flow data assimilation, SPE Journal, 2007, 12(4), 438-446, https://doi.org/10.2118/108438-PA
[25] Hamill T.M., Snyder C., A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme, Monthly Weather Review, 2000, 128(8), 2905-2919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
[26] Hantush M.M., Marino M.A., Stochastic solution to inverse problem in ground water, Journal of Hydraulic Engineering, 1997, 123(12), 1139-1146, https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1139)
[27] He X, Lucatero D., Ridler M.E., Madsen H., Kidmose J., Hole O., Petersen C., Zheng C., Refsgaard J.C., Real-time simulation of surface water and groundwater with data assimilation, Advances in Water Resources, 2019, 13-25, 127, https://doi.org/10.1016/j.advwatres.2019.03.004
[28] Hendricks Franssen H.J., Kinzelbach W., Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resources Research, 2008, 44(9), W09408, https://doi.org/10.1029/2007WR006505
[29] Hendricks Franssen H.J., Kinzelbach W., Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems, Journal of Hydrology, 2009, 365, 3-4, 261-274, https://doi.org/10.1016/j.jhydrol.2008.11.033
[30] Hoeksema R.J., Kitanidis P.K., An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resources Research, 1984, 20(7), pp.1003-1020, https://doi.org/10.1029/WR020i007p01003
[31] Houtekamer and Mitchell H.L., Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, 1998, 126(3), 796-811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
[32] Houtekamer P.L., Mitchell H.L., A sequential ensemble Kalman filter for atmospheric data assimilation, Monthly Weather Review, 2001, 129(1), 123-137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
[33] Hughson D.L., Yeh T.C.J., An inverse model for three-dimensional flow in variably saturated porous media, Water Resources Research, 2000, 36(4), pp.829-839, https://doi.org/10.1029/2000WR900001
[34] Illman W.A., Craig A.J., Liu X., Practical Issues in Imaging Hydraulic Conductivity through Hydraulic Tomography, Groundwater, 2007, 46(1), 120-132, https://doi.org/10.1111/j.1745-6584.2007.00374.x
[35] Jazwinski A.H., Stochastic Processes and Filtering Theory, Elsevier, New York, USA, 1970
[36] Kalman R.E., A New Approach to Linear Filtering and Prediction Problems, ASME Journal of Basic Engineering, 1960, 82(1), 35-45, https://doi.org/10.1115/1.3662552
[37] Keller J., Hendricks Franssen H.J., Nowak W., Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation, Advances in Water Resources, 2021, 155, 104010, https://doi.org/10.1016/j.advwatres.2021.104-010
[38] LaVenue A.M., Pickens J.F., Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model, Water Resources Research, 1992, 28(6), 1543-1569, https://doi.org/10.1029/92WR00208
[39] Li B., Yeh T.C.J., Sensitivity and moment analysis of head in variably saturated regimes, Advances in Water Resources, 1998, 21(6), pp.477-485, https://doi.org/10.1016/S0309-1708(97)00011-0
[40] Li B., Yeh T.C.J., Cokriging estimation of the conductivity field under variably saturated flow conditions, Water Resources Research, 1999, 35(12), pp.3663-3674, https://doi.org/10.1029/1999WR900268
[41] Li L., Zhou H., Hendricks Franssen H.J., Gomez-Hernandez J.J., Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter, Hydrology and Earth System Sciences, 2012, 16(2), 573-590, https://doi.org/10.5194/hess-16-573-201
[42] Li L., Zhou H., Hendricks Franssen H.J., Gomez-Hernandez J.J., Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling, Water Resources Research, 2012, 48(1), W01537, https://doi.org/10.1029/2010-WR010214
[43] Liu K., Huang G., Jiang Z., Xu X., Xiong Y., Huang Q., ?im?nek J., A gaussian process-based iterative Ensemble Kalman Filter for parameter estimation of unsaturated flow, Journal of Hydrology, 2020, 589, 125210, https://doi.org/10.10-16/j.jhydrol.2020.125210
[44] Moradkhani H., Sorooshian S., Gupta H.V., Houser P.R., Dual state-parameter estimation of hydrological models using en-semble Kalman filter, Advances in Water Resources, 2005, 28(2), 135-147, https://doi.org/10.1016/j.advwatres.20-04.09.002
[45] Nan T., Wu J., Groundwater parameter estimation using the ensemble Kalman filter with localization, Hydrogeology Journal, 2010, 19, 547-561, https://doi.org/10.1007/s10040-010-0679-9
[46] Ni C.F., Huang Y.J., Dong J.J., Yeh T.C., Sequential hydraulic tests for transient and highly permeable unconfined aquifer systems – model development and field-scale implementation, Hydrology and Earth System Sciences Discussion, 2015, 12, pp.12567-12613, https://doi.org/10.5194/hessd-12-12567-2015
[47] Ni C.F., Yeh T.C.J., Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuations in heterogeneous unsaturated formations, Advance in Water Resources, 2008, 31(12), pp.1708-1718, https://doi.org/10.1016/j.advwatres.2008.08.007
[48] Ni C.F., Yeh T.C.J., Chen J.S., Cost-effective hydraulic tomography surveys for predictin flow and transport in heterogenous aquifers, Environmental Science and Technology, 2009, 43(10), pp.3720-3727, https://doi.org/10.1021/es8024098
[49] ErM., Riva M., Guadagnini A., Neuman S.P., Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow, Water Resources Research, 2013, 49(3), 1334-1344, https://doi.org/10.1002/wrcr.20113
[50] Panzeri M., Riva M., Guadagnini A., Neuman S.P., Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation, Advances in Water Resources, 2014, 66, 8-18, https://doi.org/10.1016/j.advwatres.2014.01.007
[51] Panzeri M., Riva M., Guadagnini A., Neuman S.P., EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany, Journal of Hydrology, 2015, 521, 205-216, https://doi.org/10.10-16/j.jhydrol.2014.11.057
[52] Pauwels V.R.N., De Lannoy G.J.M., Hendricks Franssen H.J., Vereecken H., Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter, Hydrology and Earth System Sciences, 2013, 17(9), 3499-3521, https://doi.org/10.5194/hess-17-3499-2013
[53] Singha K., Johnson T., Day-Lewis F., Slater L., Electrical Imaging for Hydrogeology, The Groundwater Project, USA, 2022, https://doi.org/10.21083/978-1-77470-011-2
[54] Skyes J.F., Wilson J.L., Andrews R.W., Sensitivity analysis for steady state groundwater flow using adjoint operators, Water Resources Research, 1985, 21(3), pp.359-371, https://doi.org/10.1029/WR021i003p00359
[55] Srivastava R., Yeh T.C.J., A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions, Advances in Water Resources, 1992, 15(5), 275-287, https://doi.org/10.1016/0309-1708(92)90014-S
[56] Sun N.Z., Inverse Problems in Groundwater Modeling, Springer-Dordrecht, Dordrecht, South Holland, Netherlands, 1994, https://doi.org/10.1007/978-94-017-1970-4
[57] Sun N.Z, Yeh W.W.G, A stochastic inverse solution for transient groundwater flow: parameter identification and reliability analysis, Water Resources Research, 1992, 28(12), pp.3268-3280, https://doi.org/10.1029/92WR00683
[58] Tippett M.K., Anderson J.L., Bishop C.H., Hamill T.M., Whitaker J.S., Ensemble Square Root Filters, Monthly Weather Review, 2003, 131(7), 1485-1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
[59] Tong J., Hu B.X., Yang J., Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field, Stochastic Environmental Research and Risk Assessment, 2011, 26, 467-478, https://doi.org/10.1007/s00477-011-0534-0
[60] Vargas-Guzman J.A., Yeh T.C.J., The successive linear estimator: A revisit, Advanced in Water Resources, 2002, 25, 773-781, https://doi.org/10.1016/S0309-1708(02)00066-0
[61] Wan E.A., Nelson A.T., Chapter 5: Dual Extended Kalman Filter Methods, In: Haykin S. (Eds), Kalman Filtering and Neural Networks, Wiley, 2001, 123-173
[62] Xia C.A., Luo X., Hu B.X., Riva M., Guadagnini A., Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations, Hydrology and Earth System Sciences, 2021, 25(4), 1689-1709, https://doi.org/10.5194/hess-25-1689-2021
[63] Xiang J., Yeh T.C.J., Lee C.H., Hsu K.C., Wen J.C., A simultaneous successive linear estimator and a guide for hydraulic to-mography analysis, Water Resource Research, 2009, 45(2), W02432, https://doi.org/10.1029/2008WR007180
[64] Xu T., Gomez-Hernandez J.J., Zhou H., Li L., The power of transient piezometric head data in inverse modeling: an application of the localized normal-score enkf with covariance inflation in a heterogenous bimodal hydraulic conductivity field, Advances in Water Resources, 2013, 54, 100-118, https://doi.org/10.10-16/j.advwatres.2013.01.006
[65] Xu T., Gomez-Hernandez J.J., Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter, Advances in Water Resources, 2018, 112, 106-123, https://doi.org/10.10-16/j.advwatres.2017.12.011
[66] Yeh T.C.J., Jin M., Hanna S., An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields, Water Resources Research, 1996, 31(1), 85-92, https://doi.org/10.1029/95WR02869
[67] Yeh T.C.J, Liu S., Hydraulic tomography: Development of a new aquifer test method, Water Resources Research, 2000, 36(8), 2095-2105, https://doi.org/10.10-29/2000WR900114
[68] Yeh T.C.J, Zhang J., A geostatistical inverse method for variably saturated flow in the vadose zone, Water Resources Research, 1996, 32(9), pp.2757-2766, https://doi.org/10.1029/96WR01497
[69] Zha Y.Y., Yeh T.C.J., Illman W.A., Onoe H., Mok C.M.W., Wen J.C., Huang S.Y., Wang W., Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach, Water Resources Research, 2017, 53(4), 2850-2876, https://doi.org/10.1002/2016WR019185
[70] Zhu J, Yeh T.C.J., Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resources Research, 2005, 41(7), W07028, https://doi.org/10.1029/2004WR003790
[71] Zhou H., Gomez-Hernandez J.J., Hendricks Franssen H.J., Li L., An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Advances in Water Resources, 2011, 34(7), 844-864, https://doi.org/10.1016/j.advwatres.2011.04.014 |