博碩士論文 107684603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.218.232.140
姓名 阮黃俠(Nguyen Hoang Hiep)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 結合卡曼率波及伴隨狀態之序 率方法反推估含水層特性
(Stochastic Inversion of Aquifer Properties based on Integrated Kalman Filter and Adjoint State Methods)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-9以後開放)
摘要(中) 本研究提出一基於序率方法之反推估模式,能夠以高解析度推估水力傳導係數及比儲水係數在一飽和異質性孔隙含水層中的分佈狀況。透過結合卡曼率波及伴隨狀態之序率方法,本研究提出EnKF-AS (Ensemble Kalman Filter - Adjoint State)模式,其參考跨孔抽注試驗中所觀測的水頭變化,計算暫態水流的敏感度。透過兩個合成案例,包含一維的適定性、非適定性案例,以及垂直二維剖面反推估問題,以評估本研究所提模式推估孔隙介質含水層中水力傳導係數及比儲水係數分布狀況。數值試驗顯示出良好結果,本研究所提出之模式在明確定義狀態下,能透過相對少量的觀測數據,有效描述飽和受壓的異質性孔隙介質含水層中參數分佈狀況。本研究提出之模式表現優於於傳統方法如MCS及EnKF,在二維合成案例中EnKF-AS相關係數為0.80,而MCS及EnKF分別為0.70及0.71。在計算資源上,EnKF-AS計算速度分別為MCS及EnKF的2倍及4倍。
摘要(英) This study presents a stochastic inversion model of aquifer properties that is capable of estimating the distributions of hydraulic conductivity and specific storage with high resolution in heterogeneous saturated porous media. Based on the concept of the Kalman Filter technique and the Adjoint State method, we successfully developed an EnKF-AS (Ensemble Kalman Filter - Adjoint State) model that accounts for the sensitivities of transient flows using the hydraulic head measurements from cross-hole hydraulic pumping or injection tests. Two synthetic cases, including a one-dimensional well-posed and an ill-posed case and a vertical profile of aquifer in two-dimensional problems, are used to evaluate the developed model in estimating the distributions of hydraulic conductivity and specific storage in saturated porous media. The results of the numerical experiments are promising. The developed stochastic inversion model can reconstruct the property (i.e., hydraulic conductivity and specific storage) fields if well-defined conditions are met. With a relatively small number of available measurements, the proposed model can accurately capture the patterns and the magnitudes of estimated properties in the saturated zone, confined aquifer, and heterogeneous porous media. In comparison, this model outperformed better than conventional methods in the field, such as Monte Carlo Simulation (MCS) and Ensemble Kalman Filter (EnKF) in two-dimensional synthetic aquifer cases with high correlation at 0.80 while MCS and EnKF are 0.70 and 0.71, respectively. Furthermore, the computational costs of the EnKF-AS model exhibited 2-fold and 4-fold speedups compared to MCS and EnKF, respectively.
關鍵字(中) ★ 序率反推估
★ 適定性
★ 非適定性
關鍵字(英) ★ Stochastic Inversion
★ Well-posed and ill-posed
★ EnKF-AS
★ EnKF
★ MCS
論文目次 Pages
Abstract .................................................................................................................... i
Acknowledgement ................................................................................................. iii
List of Contents ....................................................................................................... v
List of Figures .......................................................................................................... vii
List of Tables ............................................................................................................ ix
Chapter I. Introduction ......................................................................................... 1
1.1. Inverse problems .................................................................................... 2
1.2. Data assimilation in groundwater flow system ................................ 3
1.2.1. Kalman Filter .............................................................................. 4
1.2.2. Ensemble Kalman Filter ............................................................ 4
1.3. Adjoint State Method ............................................................................. 6
1.4. Research objectives and basic approaches .......................................... 7
1.5. Organization of dissertation ................................................................. 8
Chapter II. Methodologies ................................................................................... 9
2.1. Problems formualation .......................................................................... 10
2.2. Kalman Filter technique ........................................................................ 11
2.3. Ensemble Kalman Filter ........................................................................ 16
2.4. Adjoint State method for transient flow ............................................. 17
2.4. Performance evaluation metrics .......................................................... 19
Chapter III. Stochastic Inversion of Aquifer Properties ................................ 20
3.1. One-dimensional synthetic case example ........................................... 21
3.1.1. Numerical considerations and conceptual model ................ 21
3.1.2. Parameter estimation in well-posed synthetic case .............. 22
3.1.3. Parameter estimation in ill-posed synthetic case .................. 27
3.2. Two-dimensional synthetic case example .......................................... 30
3.2.1. Generation of synthetic aquifer ............................................... 30
3.2.2. Sampling of the syntheic observations ................................... 31
3.2.3. Parameter estimation of hydraulic conductivity ................... 32
3.2.4. Parameter estimation of specific storage ................................ 34
3.2.5. Computation efficiency in parameter estimation ................. 35
Chapter IV. Conclusions and contributions ..................................................... 41
References ............................................................................................................... 43
Bibliography ........................................................................................................... 52
參考文獻 [1] Anderson J.L., An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 2001, 129(12), 2884-2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
[2] Bencala K.E., Seinfeld J.H., Distributed parameter filtering: boundary noise and discrete observations, International Journal of Systems Science, 1979, 10(5), pp.493-512, https://doi.org/10.1080/00207727908941598
[3] Bishop C.H., Etherton B.J., Majumdar S.J., Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Monthly Weather Review, 2001, 129(3), 420-436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASW-TET>2.0.CO;2
[4] Burgers G., Jan van Leeuwen P., Evensen G., Analysis scheme in the Ensemble Kalman Filter, Monthly Weather Review, 1998, 126(6), pp.1719-1724, https://doi.org/10.11-75/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[5] Chen J.L., Wen J.C., Yeh T.C.J., Lin K.Y.A., Wang Y.L., Huang S.Y., Ma Y., Yu C.Y., Lee C.H., Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan, Journal of Hydrology, 2019, 569, 117-134, https://doi.org/10.1016/j.jhydrol.2018.11.064
[6] Chen Y., Zhang D., Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Advances in Water Resources, 2006, 29(8), 1107-1122, https://doi.org/10.1016/j.advwatres.2005.09.007
[7] Chen Z., Xu T., Gomez-Hernandez J.J., Zanini A., Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Sim-ultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter, Mathematical Geosciences, 2021, 53, 1587-1615, https://doi.org/10.1007/s11004-021-09928-y
[8] Cirpka O.A., Kitanidis P.K., Sensitivity of temporal moments calculated by the adjoint state method and joint inversing of head and tracer data, Advances in Water Resources, 2000, 24(1), 89-103, https://doi.org/10.1016/S0309-1708(00)00007-5
[9] Dagan G., Flow and Transport in Porous Formations, Springer-Verlag, Berlin, Heidelberg, 1989, https://link.springer.com/book/10.1007/978-3-642-75015-1
[10] Dagan G., Neuman S.P., Subsurface Flow and Transport: A Stochastic Approach, Cambridge University Press, Cambridge, Kingdom of England, 1997, https://doi.org/10.1017/CBO9780511600081
[11] Delhomme J. P., Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach, Water Resources Research, 1979, 15(2), 269-280, https://doi.org/10.1029/WR015i002p00269
[12] Eigbe U., Beck M.B., Wheater H.S., Hirano F., Kalman filtering in groundwater flow modelling: problems and prospects, Stochastic Hydrology and Hydraulics, 1998, 12, 15-32, https://doi.org/10.1007/s004770050007
[13] Erdal D., Cirpka O.A., Preconditioning an ensemble Kalman filter for groundwater flow using environmental tracer observations, Journal of Hydrology, 2017, 545, 42-54, https://doi.org/10.1016/j.jhydrol.2016.11.064
[14] Evensen G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans, 1994, 99(C5), 10143-10162, https://doi.org/10.1029/94JC00572
[15] Evensen G., The Ensemble Kalman Filter: theoretical formulation and practical implementation, Oceans Dynamics, 2003, 53, 343-367, https://doi.org/10.10-07/s10236-003-0036-9
[16] Evensen G., The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Systems Magazine, 2009, 29(3), 83-104, https://doi.org/10.1109/MCS.2009.932223

[17] Ferraresi M., Todini E., Vignoli R., A solution to the inverse problem in groundwater hydrology based on Kalman filtering, Journal of Hydrology, 1996, 175(1-4), 567-581, https://doi.org/10.1016/S0022-1694(96)80025-4
[18] Geer F.C.V., Kloet P.V.D., Two algorithms for parameter estimation in groundwater flow problems, Journal of Hydrology, 1985, 77(1-4), 361-378, https://doi.org/10.1016/0022-1694(85)90216-1
[19] Gelb A., Applied Optimal Estimation, MIT Press, Massachusetts, USA, 1974
[20] Gelhar L.W., Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, New Jersery, 1993
[21] Ghorbanidehno, H., Kokkinaki A., Lee J., Darve E., Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology, Journal of Hydrology, 2020, 591, 125266, https://doi.org/10.1016/j.jhydrol.20-20.125266
[22] Gharamti M.E., Hoteit I., Valstar J., Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering, Advances in Water Resources, 2013, 60, 75-88, https://doi.org/10.1016/j.advwatres.2013.07.011
[23] Graham W.D., McLaughlin D., Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments, Water Resources Research, 1989, 25(11), 2331-2355, https://doi.org/10.1029/WR025i011p02331
[24] Gu Y., Oliver D.S., An iterative ensemble Kalman filter for multiphase fluid flow data assimilation, SPE Journal, 2007, 12(4), 438-446, https://doi.org/10.2118/108438-PA
[25] Hamill T.M., Snyder C., A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme, Monthly Weather Review, 2000, 128(8), 2905-2919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
[26] Hantush M.M., Marino M.A., Stochastic solution to inverse problem in ground water, Journal of Hydraulic Engineering, 1997, 123(12), 1139-1146, https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1139)
[27] He X, Lucatero D., Ridler M.E., Madsen H., Kidmose J., Hole O., Petersen C., Zheng C., Refsgaard J.C., Real-time simulation of surface water and groundwater with data assimilation, Advances in Water Resources, 2019, 13-25, 127, https://doi.org/10.1016/j.advwatres.2019.03.004
[28] Hendricks Franssen H.J., Kinzelbach W., Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resources Research, 2008, 44(9), W09408, https://doi.org/10.1029/2007WR006505
[29] Hendricks Franssen H.J., Kinzelbach W., Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems, Journal of Hydrology, 2009, 365, 3-4, 261-274, https://doi.org/10.1016/j.jhydrol.2008.11.033
[30] Hoeksema R.J., Kitanidis P.K., An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resources Research, 1984, 20(7), pp.1003-1020, https://doi.org/10.1029/WR020i007p01003
[31] Houtekamer and Mitchell H.L., Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, 1998, 126(3), 796-811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
[32] Houtekamer P.L., Mitchell H.L., A sequential ensemble Kalman filter for atmospheric data assimilation, Monthly Weather Review, 2001, 129(1), 123-137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
[33] Hughson D.L., Yeh T.C.J., An inverse model for three-dimensional flow in variably saturated porous media, Water Resources Research, 2000, 36(4), pp.829-839, https://doi.org/10.1029/2000WR900001
[34] Illman W.A., Craig A.J., Liu X., Practical Issues in Imaging Hydraulic Conductivity through Hydraulic Tomography, Groundwater, 2007, 46(1), 120-132, https://doi.org/10.1111/j.1745-6584.2007.00374.x
[35] Jazwinski A.H., Stochastic Processes and Filtering Theory, Elsevier, New York, USA, 1970
[36] Kalman R.E., A New Approach to Linear Filtering and Prediction Problems, ASME Journal of Basic Engineering, 1960, 82(1), 35-45, https://doi.org/10.1115/1.3662552
[37] Keller J., Hendricks Franssen H.J., Nowak W., Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation, Advances in Water Resources, 2021, 155, 104010, https://doi.org/10.1016/j.advwatres.2021.104-010
[38] LaVenue A.M., Pickens J.F., Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model, Water Resources Research, 1992, 28(6), 1543-1569, https://doi.org/10.1029/92WR00208
[39] Li B., Yeh T.C.J., Sensitivity and moment analysis of head in variably saturated regimes, Advances in Water Resources, 1998, 21(6), pp.477-485, https://doi.org/10.1016/S0309-1708(97)00011-0
[40] Li B., Yeh T.C.J., Cokriging estimation of the conductivity field under variably saturated flow conditions, Water Resources Research, 1999, 35(12), pp.3663-3674, https://doi.org/10.1029/1999WR900268
[41] Li L., Zhou H., Hendricks Franssen H.J., Gomez-Hernandez J.J., Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter, Hydrology and Earth System Sciences, 2012, 16(2), 573-590, https://doi.org/10.5194/hess-16-573-201
[42] Li L., Zhou H., Hendricks Franssen H.J., Gomez-Hernandez J.J., Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling, Water Resources Research, 2012, 48(1), W01537, https://doi.org/10.1029/2010-WR010214
[43] Liu K., Huang G., Jiang Z., Xu X., Xiong Y., Huang Q., ?im?nek J., A gaussian process-based iterative Ensemble Kalman Filter for parameter estimation of unsaturated flow, Journal of Hydrology, 2020, 589, 125210, https://doi.org/10.10-16/j.jhydrol.2020.125210
[44] Moradkhani H., Sorooshian S., Gupta H.V., Houser P.R., Dual state-parameter estimation of hydrological models using en-semble Kalman filter, Advances in Water Resources, 2005, 28(2), 135-147, https://doi.org/10.1016/j.advwatres.20-04.09.002
[45] Nan T., Wu J., Groundwater parameter estimation using the ensemble Kalman filter with localization, Hydrogeology Journal, 2010, 19, 547-561, https://doi.org/10.1007/s10040-010-0679-9
[46] Ni C.F., Huang Y.J., Dong J.J., Yeh T.C., Sequential hydraulic tests for transient and highly permeable unconfined aquifer systems – model development and field-scale implementation, Hydrology and Earth System Sciences Discussion, 2015, 12, pp.12567-12613, https://doi.org/10.5194/hessd-12-12567-2015
[47] Ni C.F., Yeh T.C.J., Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuations in heterogeneous unsaturated formations, Advance in Water Resources, 2008, 31(12), pp.1708-1718, https://doi.org/10.1016/j.advwatres.2008.08.007
[48] Ni C.F., Yeh T.C.J., Chen J.S., Cost-effective hydraulic tomography surveys for predictin flow and transport in heterogenous aquifers, Environmental Science and Technology, 2009, 43(10), pp.3720-3727, https://doi.org/10.1021/es8024098
[49] ErM., Riva M., Guadagnini A., Neuman S.P., Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow, Water Resources Research, 2013, 49(3), 1334-1344, https://doi.org/10.1002/wrcr.20113
[50] Panzeri M., Riva M., Guadagnini A., Neuman S.P., Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation, Advances in Water Resources, 2014, 66, 8-18, https://doi.org/10.1016/j.advwatres.2014.01.007
[51] Panzeri M., Riva M., Guadagnini A., Neuman S.P., EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany, Journal of Hydrology, 2015, 521, 205-216, https://doi.org/10.10-16/j.jhydrol.2014.11.057
[52] Pauwels V.R.N., De Lannoy G.J.M., Hendricks Franssen H.J., Vereecken H., Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter, Hydrology and Earth System Sciences, 2013, 17(9), 3499-3521, https://doi.org/10.5194/hess-17-3499-2013
[53] Singha K., Johnson T., Day-Lewis F., Slater L., Electrical Imaging for Hydrogeology, The Groundwater Project, USA, 2022, https://doi.org/10.21083/978-1-77470-011-2
[54] Skyes J.F., Wilson J.L., Andrews R.W., Sensitivity analysis for steady state groundwater flow using adjoint operators, Water Resources Research, 1985, 21(3), pp.359-371, https://doi.org/10.1029/WR021i003p00359
[55] Srivastava R., Yeh T.C.J., A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions, Advances in Water Resources, 1992, 15(5), 275-287, https://doi.org/10.1016/0309-1708(92)90014-S
[56] Sun N.Z., Inverse Problems in Groundwater Modeling, Springer-Dordrecht, Dordrecht, South Holland, Netherlands, 1994, https://doi.org/10.1007/978-94-017-1970-4
[57] Sun N.Z, Yeh W.W.G, A stochastic inverse solution for transient groundwater flow: parameter identification and reliability analysis, Water Resources Research, 1992, 28(12), pp.3268-3280, https://doi.org/10.1029/92WR00683
[58] Tippett M.K., Anderson J.L., Bishop C.H., Hamill T.M., Whitaker J.S., Ensemble Square Root Filters, Monthly Weather Review, 2003, 131(7), 1485-1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
[59] Tong J., Hu B.X., Yang J., Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field, Stochastic Environmental Research and Risk Assessment, 2011, 26, 467-478, https://doi.org/10.1007/s00477-011-0534-0
[60] Vargas-Guzman J.A., Yeh T.C.J., The successive linear estimator: A revisit, Advanced in Water Resources, 2002, 25, 773-781, https://doi.org/10.1016/S0309-1708(02)00066-0
[61] Wan E.A., Nelson A.T., Chapter 5: Dual Extended Kalman Filter Methods, In: Haykin S. (Eds), Kalman Filtering and Neural Networks, Wiley, 2001, 123-173
[62] Xia C.A., Luo X., Hu B.X., Riva M., Guadagnini A., Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations, Hydrology and Earth System Sciences, 2021, 25(4), 1689-1709, https://doi.org/10.5194/hess-25-1689-2021
[63] Xiang J., Yeh T.C.J., Lee C.H., Hsu K.C., Wen J.C., A simultaneous successive linear estimator and a guide for hydraulic to-mography analysis, Water Resource Research, 2009, 45(2), W02432, https://doi.org/10.1029/2008WR007180
[64] Xu T., Gomez-Hernandez J.J., Zhou H., Li L., The power of transient piezometric head data in inverse modeling: an application of the localized normal-score enkf with covariance inflation in a heterogenous bimodal hydraulic conductivity field, Advances in Water Resources, 2013, 54, 100-118, https://doi.org/10.10-16/j.advwatres.2013.01.006
[65] Xu T., Gomez-Hernandez J.J., Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter, Advances in Water Resources, 2018, 112, 106-123, https://doi.org/10.10-16/j.advwatres.2017.12.011
[66] Yeh T.C.J., Jin M., Hanna S., An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields, Water Resources Research, 1996, 31(1), 85-92, https://doi.org/10.1029/95WR02869
[67] Yeh T.C.J, Liu S., Hydraulic tomography: Development of a new aquifer test method, Water Resources Research, 2000, 36(8), 2095-2105, https://doi.org/10.10-29/2000WR900114
[68] Yeh T.C.J, Zhang J., A geostatistical inverse method for variably saturated flow in the vadose zone, Water Resources Research, 1996, 32(9), pp.2757-2766, https://doi.org/10.1029/96WR01497
[69] Zha Y.Y., Yeh T.C.J., Illman W.A., Onoe H., Mok C.M.W., Wen J.C., Huang S.Y., Wang W., Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach, Water Resources Research, 2017, 53(4), 2850-2876, https://doi.org/10.1002/2016WR019185
[70] Zhu J, Yeh T.C.J., Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resources Research, 2005, 41(7), W07028, https://doi.org/10.1029/2004WR003790
[71] Zhou H., Gomez-Hernandez J.J., Hendricks Franssen H.J., Li L., An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Advances in Water Resources, 2011, 34(7), 844-864, https://doi.org/10.1016/j.advwatres.2011.04.014
指導教授 倪春發(Ni Chuen Fa) 審核日期 2025-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明