博碩士論文 111323140 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.121.38
姓名 楊子毅(Zi-Yi Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氮化矽表面雷射處理特徵分析及其對化學鍍銅層接合性能的影響
(Surface Characteristics of Laser-Processed Silicon Nitride and Their Effects on the Bonding Performance of Electroless Copper Layers)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-1以後開放)
摘要(中) 氮化矽陶瓷(Si?N?)作為一種具有高強度、耐高溫和低膨脹係數的優異基板材料,逐漸成為高性能電子設備中的重要材料,其在高溫和高負載條件下依然能保持穩定的物理及化學性能,並具備耐磨性、抗腐蝕性和抗熱震性,廣泛應用於航空航天、汽車工業以及電子封裝等領域,此外氮化矽陶瓷的低熱膨脹係數和良好的絕緣性能使其成為功率電子模組中的理想基板材料。
本研究旨在利用奈秒雷射表面處理技術,研究不同雷射能量密度對氮化矽陶瓷基板表面形貌的影響,針對表面微結構的檢測方法,一般以計算平均表面粗糙度(Arithmetic Mean Surface Roughness,Sa)及算術平均粗糙度(Arithmetic Mean Roughness,Ra)兩種方法來檢測為主,本研究加入以光學方法計算其雷射表面處理後的表面積變化及表面輪廓線平坦化後的長度變化,並與接合強度測試結果進行討論。
關於接合方法,過去普遍為透過高溫和高壓的擴散接合法為主,本研究此次以相對較低溫且無須施加壓力的化學還原鍍銅法來進行接合,化學還原鍍銅技術在電子封裝中具有重要作用,相較於傳統電鍍,化學鍍銅無需外加電流,特別適合於形狀複雜的基材表面覆蓋,該技術通過精確控制溶液參數來調節鍍層厚度,進一步提升其電氣性能,這使其在高性能電子設備的應用中極具潛力,本研究也會對透過文獻與實驗結果對這兩種接合方法進行接合界面的討論。
實驗結果顯示,隨著雷射能量密度的增加,氮化矽陶瓷基板的粗糙度、表面積及輪廓線長度都有顯著增加,從而增強了銅層的附著力和剝離強度。當雷射能量密度達到94.09 J/cm2時,剝離強度達到最大值,表明雷射處理能夠顯著改善陶瓷基板的表面結構,為化學鍍銅層提供更強的機械錨定效應和化學反應位點。
摘要(英) Silicon nitride (Si?N?) ceramics, known for their high strength, superior thermal stability, and low coefficient of thermal expansion, have progressively become vital substrate materials for high-performance electronic devices. These ceramics exhibit stable physical and chemical properties under high-temperature and high-load conditions, along with exceptional wear resistance, corrosion resistance, and thermal shock resistance. Such characteristics render them widely applicable in aerospace, automotive industries, and electronic packaging. Additionally, their low coefficient of thermal expansion and excellent insulating properties make silicon nitride ceramics ideal substrate materials for power electronic modules.
This study utilizes nanosecond laser surface treatment to investigate the effects of varying laser energy densities on the surface morphology of silicon nitride ceramic substrates. Surface microstructural characterization primarily involves the measurement of arithmetic mean surface roughness (Sa) and arithmetic mean roughness (Ra). Furthermore, this study integrates optical methods to calculate surface area changes and contour length variations after laser treatment and correlates these findings with the bonding strength test results.
Conventional bonding methods predominantly rely on high-temperature and high-pressure diffusion bonding. In contrast, this study employs electroless copper plating via chemical reduction as a relatively low-temperature and pressure-free bonding method. Electroless copper plating is a key technique in electronic packaging due to its ability to coat complex substrate geometries without requiring external currents. By precisely controlling solution parameters, this method enables the regulation of plating thickness, thereby enhancing electrical properties. These advantages position electroless copper plating as a highly promising approach for high-performance electronic applications. This study also examines bonding interface characteristics through a comparative analysis of diffusion bonding results reported in the literature and experimental findings.
Experimental results demonstrate that increasing laser energy density significantly enhances the roughness, surface area, and contour length of silicon nitride ceramic substrates. These changes lead to enhanced adhesion and increased peel strength of the copper layer. At a laser energy density of 94.09 J/cm2, the peel strength reaches its peak, indicating that laser treatment effectively modifies the surface structure of ceramic substrates. This enhancement provides stronger mechanical anchoring effects and additional chemical reaction sites for the electroless copper layer.
關鍵字(中) ★ 氮化矽陶瓷基板
★ 化學鍍銅
★ 雷射表面處理
★ 剝離強度測試
關鍵字(英) ★ Silicon Nitride Ceramic Substrates
★ Electroless Copper Plating
★ Laser Surface Treatment
★ Peel Strength Test
論文目次 中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 緒論 1
1.1 前言 1
1.2 研究背景與目的 2
1.3 氮化矽陶瓷材料 5
1.3.1 材料演進 5
1.3.2 材料簡介與製造方法 7
Chapter 2 文獻回顧 9
2.1 金屬與陶瓷的接合製程 9
2.1.1 擴散接合法 12
2.1.2 雷射輔助擴散接合法 18
2.2 金屬與陶瓷材料鍵結 21
2.2.1 物理鍵結 21
2.2.2 化學鍵結 24
2.3 化學鍍銅機制探討 26
Chapter 3 研究方法 30
3.1 實驗方法與流程 30
3.2 實驗材料與試片製備 31
3.2.1 實驗材料 31
3.2.2 試片製備 33
3.3 實驗細節與設計 33
3.3.1 奈秒雷射規格及系統 33
3.3.2 雷射加工 35
3.3.3 化學還原鍍銅法 40
3.3.4 接合強度測試 42
3.4 檢測分析儀器 44
Chapter 4 結果與討論 50
4.1 雷射表面處理對氮化矽的影響探討 50
4.1.1 雷射對氮化矽表面形貌的影響 50
4.1.2 雷射對氮化矽橫截面形貌的影響 53
4.1.3 不同雷射能量密度對氮化矽表面處理深度影響 54
4.1.4 不同雷射能量密度對氮化矽表面粗糙度影響 56
4.1.5 不同雷射能量密度對氮化矽表面長度變化影響 61
4.1.6 不同雷射能量密度對氮化矽表面面積影響 64
4.2 雷射表面處理對氮化矽表面潤濕角的影響 67
4.3 氮化矽陶瓷基板化學鍍銅之研究分析 69
4.3.1 化學鍍銅結果分析探討 69
4.3.2 電性量測與分析 72
4.4 氮化矽陶瓷基板表面與接合介面的微觀形貌 74
4.4.1 雷射表面處理後的微觀形貌觀察 74
4.4.2 雷射能量密度對氮化矽表面形貌的影響 77
4.4.3 氮化矽表面雷射處理後EDS成分分析 79
4.4.4 接合介面的微觀結構與EDS成分分析 81
4.5 氮化矽陶瓷基板化學鍍銅之接合強度測試 87
4.5.1 剝離強度測試結果與分析 87
4.6 氮化矽陶瓷基板與化學鍍銅接合之綜合討論 90
Chapter 5 結論與未來工作 93
5.1 結論 93
5.2 未來工作 94
參考文獻 96
碩士論文口試教授問題集 98
參考文獻 [1] PanSci. "數位時代下,台灣 5G 專網該如何發展." https://pansci.asia/archives/341124 (accessed.
[2] B. Brown. "PCB印刷電路板是什麼?PCBs種類、製程、AI和電動車如何帶動PCB產業." https://www.lorric.com/tw/Industries/Printed-Circuit-Board-PCB (accessed.
[3] T. Huesgen, "Printed circuit board embedded power semiconductors: A technology review," Power Electronic Devices and Components, vol. 3, p. 100017, 2022.
[4] F. L. Riley, "Silicon nitride and related materials," Journal of the American Ceramic Society, vol. 83, no. 2, pp. 245-265, 2000.
[5] R. M. Bock, B. J. McEntire, B. S. Bal, M. N. Rahaman, M. Boffelli, and G. Pezzotti, "Surface modulation of silicon nitride ceramics for orthopaedic applications," Acta biomaterialia, vol. 26, pp. 318-330, 2015.
[6] E. Baburaj, D. Starikov, J. Evans, G. Shafeev, and A. Bensaoula, "Enhancement of adhesive joint strength by laser surface modification," International journal of adhesion and adhesives, vol. 27, no. 4, pp. 268-276, 2007.
[7] C.-H. Y. a. D. R. K. Natarajan Jeyaprakash, "Laser Surface Modification of Materials," Practical Applications of Laser Ablation, 2020, doi: 10.5772/intechopen.94439.
[8] A. Bogaerts and Z. Chen, "Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 60, no. 9-10, pp. 1280-1307, 2005.
[9] G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications. William Andrew, 1990.
[10] R. J. Umpleby II, S. C. Baxter, A. M. Rampey, G. T. Rushton, Y. Chen, and K. D. Shimizu, "Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers," Journal of Chromatography B, vol. 804, no. 1, pp. 141-149, 2004.
[11] X. S. Y. Z. J. K. W. Martinez, "Artificial Intelligence Applications in High-Frequency Magnetic Components Design for Power Electronics Systems: An Overview," IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 8478 - 8496, 2024, doi: 10.1109/TPEL.2024.3381431.
[12] G. Pezzotti, "Silicon nitride as a biomaterial," Journal of the Ceramic Society of Japan, vol. 131, no. 8, pp. 398-428, 2023.
[13] A. M. L. POOLE, "Study and Application of Silicon Nitride as a High Temperature Material," 1959.
[14] L. Junting, Z. Kaifeng, W. Guofeng, and H. Wenbo, "Fabrication of fine-grained Si 3 N 4-Si 2 N 2 O composites by sintering amorphous nano-sized silicon nitride powders," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 21, pp. 97-99, 2006.
[15] K. Suganuma, "Recent advances in joining technology of ceramics to metals," Isij International, vol. 30, no. 12, pp. 1046-1058, 1990.
[16] G. Liu, D. Wang, Y. Xing, X. Zhong, and W. Pan, "Copper bonding silicon nitride substrate using atmosphere plasma spray," Journal of the European Ceramic Society, vol. 43, no. 9, pp. 3981-3987, 2023.
[17] I.-C. Cheng and S. Wagner, "Overview of flexible electronics technology," Flexible electronics: materials and applications, pp. 1-28, 2009.
[18] S. Hampshire, "Silicon nitride ceramics–review of structure, processing and properties," Journal of achievements in materials and manufacturing engineering, vol. 24, no. 1, pp. 43-50, 2007.
[19] X. Zhu, Y. Zhou, and K. Hirao, "Post-densification behavior of reaction-bonded silicon nitride (RBSN): Effect of various characteristics of RBSN," Journal of materials science, vol. 39, pp. 5785-5797, 2004.
[20] S. Immelmann, E. Welle, and W. Reimers, "X-ray residual stress analysis on machined and tempered HPSN-ceramics," Materials Science and Engineering: A, vol. 238, no. 2, pp. 287-292, 1997.
[21] G. Terwilliger and F. Lange, "Pressureless sintering of Si 3 N 4," Journal of Materials Science, vol. 10, pp. 1169-1174, 1975.
[22] M. Bocanegra-Bernal, "Hot isostatic pressing (HIP) technology and its applications to metals and ceramics," Journal of materials science, vol. 39, no. 21, pp. 6399-6420, 2004.
[23] S. Mishra, A. Sharma, D. Jung, and J. Jung, "Recent advances in active metal brazing of ceramics and process," Metals and Materials International, vol. 26, pp. 1087-1098, 2020.
[24 ] O. Akselsen, "Diffusion bonding of ceramics," Journal of materials science, vol. 27, pp. 569-579, 1992.
[25] J. Hu, Y. Wu, C. Li, L. Wang, S. Wang, and Z. Shi, "Pressure-assisted direct bonding of copper to silicon nitride for high thermal conductivity and strong interfacial bonding strength," Journal of Materials Science, vol. 56, pp. 17994-18005, 2021.
[26] Y. Song et al., "Synergistically enhanced Si3N4/Cu heterostructure bonding by laser surface modification," Journal of Materials Science & Technology, vol. 182, pp. 187-197, 2024.
[27 ] X. Zou et al., "Enhanced interfacial bonding strength between metal and polymer via synergistic effects of particle anchoring and chemical bonding," Journal of Manufacturing Processes, vol. 68, pp. 558-568, 2021.
[28] T. Orent and R. Wagner, "Investigation of the chemical bonding of Cr and Ti to silicon nitride," Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 1, no. 3, pp. 844-849, 1983.
[29] C. Deckert, "Electroless copper plating, a review: Part I," Plating and surface finishing, vol. 82, no. 2, pp. 48-55, 1995.
[30] C. G. Swain, A. L. Powell, W. A. Sheppard, and C. R. Morgan, "Mechanism of the Cannizzaro reaction," Journal of the American Chemical Society, vol. 101, no. 13, pp. 3576-3583, 1979.
[31] H. Ma, Z. Liu, L. Wu, Y. Wang, and X. Wang, "Study of a pre-treatment process for electroless copper plating on ceramics," Thin Solid Films, vol. 519, no. 22, pp. 7860-7863, 2011.
[32] ""Xyztec-Bond testers Sigma."." https://www.xyztec.com/products/sigma/ (accessed.
[33] T. C. o. t. IPC. "Peel Strength of Metallic Clad Laminates." https://www.ipc.org/sites/default/files/test_methods_docs/2.4.8c.pdf (accessed.
[34] t. f. e. From Wikipedia. "Euclidean distance." https://en.wikipedia.org/wiki/Euclidean_distance
指導教授 董必正 審核日期 2025-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明