博碩士論文 108684605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.20.239.211
姓名 鄧明君(Dang Minh Quan)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Spatiotemporal Variation of Submarine Groundwater Discharge in Taoyuan Coastal Area, NW Taiwan: Numerical and Geochemical Approaches)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-1以後開放)
摘要(中) 海岸帶地下水出流(submarine groundwater discharge, SGD)為淡水、營養物質和溶質從陸地向海洋輸送的重要媒介,在乾季時亦可作為關鍵的淡水資源。台灣桃園沿海有相當強的海岸帶地下水出流跡象,該地區有多個沿海自流井 (flowing artesian wells, FAWs),在2021年極為乾旱條件下仍有顯著出流。海岸帶是一個動態且複雜的環境,包含潮汐變化、密度驅動的海水與淡水交換以及季節性海水與淡水交互作用,形成了海水與淡水之間錯綜複雜的水文交互作用。本研究結合數值模擬和地球化學分析,探討了自流井和海岸帶地下水出流季節性變化的特性與發生機制,特別是本研究觀測資料為極端乾旱條件下(2021年大旱)取得,更凸顯本研究的重要性。
本研究分析了海岸帶自流井和陸地水井的水力水頭數據,並結合潮汐觀測,探討與提出沿海自流井的發生機制。多相地下水流模型顯示,沿海自流井導因於海淡水界面引起的地下水上升流驅動,這一現象與傳統的自流井概念不同。而透過該模型估算日均海岸帶地下水出流量,可為當地人口提供約23.18天的用水需求。此外,鐳同位素示蹤劑(223Ra、224Raex 和228Ra)之季節性變化分析結果顯示,海岸帶地下水出流量在濕季(841.47 ± 156.61 cm d?1)約是乾季(391.34 ± 79.59 cm d?1)的2.7倍,而較深層含水層可能為乾旱期間海岸帶地下水出流的主要來源。穩定同位素(δ18O、δD)和鐳活度比之分析結果亦支持該結論。本研究之結果加深了我們對不同水文條件下海岸帶地下水出流的了解,強化了該出流水在緩解乾旱中的可能貢獻,並凸顯了以海岸帶自流井作為研究海岸帶動態地下水出流研究的重要性。
摘要(英) Submarine groundwater discharge (SGD) plays a vital role as a source of water, nutrients, and solutes from land to sea, and might serving as a crucial freshwater resource, particularly during drought conditions. The northwestern coast of Taiwan, known for its strong SGD, features several coastal flowing artesian wells (FAWs) that become prominent under such conditions. This coastal area presents a dynamic and complex environment where tidal variation, density-driven seawater circulation, and seasonal fresh groundwater discharge creates intricate hydrological interactions between seawater and freshwater. This study integrates physical modeling and geochemical analysis to investigate the mechanisms driving FAWs and seasonal variations in SGD, with a particular focus on extreme drought conditions.
Hydraulic head data from coastal FAWs and onshore wells were analyzed alongside tidal observations to elucidate the mechanisms driving coastal FAWs. Multi-phase groundwater modeling revealed that coastal FAWs are driven by upward flow caused by a sharp freshwater-seawater interface, which acts as a barrier and deviates from conventional geological concepts. The daily SGD volume was estimated from this model to sustain the local population’s water needs for approximately 23.18 days. Complementing this, radium isotope tracers (223Ra, 22?Ra??, and 22?Ra) provided valuable insights into seasonal variations in SGD. The result of SGD during the wet season (841.47 ± 156.61 cm d?1) was 2.7 times higher than those in the dry season (391.34 ± 79.59 cm d?1), with deep aquifers likely contributing to SGD during droughts, as evidenced by stable isotope (δ1?O, δD) and radium activity ratio analyses. These findings enhance our understanding of SGD under contrasting hydrological conditions, underscore its role in mitigating drought impacts, and highlight the importance of coastal FAWs as key tools for investigating SGD dynamics.
關鍵字(中) ★ 海岸帶地下水出流
★ 海岸帶自流井
★ 地下水源
★ 多相地下水模型
★ 鐳同位素
★ 桃園-中壢台地
關鍵字(英) ★ Submarine groundwater discharge
★ Coastal flowing artesian well
★ Source of groundwater
★ Multi-phase groundwater model
★ Radium isotopes
★ Taoyuan-Chungli Tableland
論文目次 Include page nu摘 要 i
Abstract ii
Acknowledgments iii
List of Contents vi
List of Figures ix
List of Tables xiii
List of Abbreviations xiv
CHAPTER 1. Introduction 1
1.1 Research background 1
1.2 Overview of SGD in Taiwan 5
1.3 The Taoyuan-Chungli tableland 9
1.3.1 Geological setting 9
1.3.2 Hydrogeological conditions 12
1.3.3 The potential of SGD 16
1.4 Motivations and research objectives 21
CHAPTER 2. Coastal Flowing Artesian Wells and Submarine Groundwater Discharge Driven by Tidal Variation at TaiCOAST Site in Taoyuan, Taiwan 23
2.1 Introduction 23
2.2 Study area and materials 27
2.2.1 Study area 27
2.2.2 Data collection 29
2.3 Methodology 31
2.3.1 Governing equations 31
2.3.2 Numerical implementation 33
2.4 Results 35
2.4.1 Observations 35
2.4.2 Simulation results 36
2.4.3 Water density distribution due to tidal variation 39
2.4.4 Depth profile of coastal FAWs under tidal variation 41
2.5 Discussion 42
2.5.1 Mechanism of coastal FAWs 42
2.5.2 Flux and total volume of SGD 45
CHAPTER 3. Investigation of Seasonal Variations in Submarine Groundwater Discharge through Radium Isotopes under Drought Conditions in Northwestern Coastal Taiwan 47
3.1 Introduction 47
3.2 Materials and methods 56
3.2.1 Field work 56
3.2.2 Analytical techniques 58
3.3 Results 60
3.3.1 δ18O and δD in water samples 60
3.3.2 224Raex and 228Ra in water samples 60
3.3.3 The calculated 224Raex in sediments and pore waters 63
3.3.4 224Raex and 223Ra in time-series coastal seawater 65
3.4 Discussion 65
3.4.1 Observation of δ18O and δD 65
3.4.2 Radium-derived apparent age of coastal seawater 68
3.4.3 Submarine groundwater discharge 72
3.4.4 Comparisons of SGD 81
CHAPTER 4. Conclusions and Suggestions 83
4.1 Summary 83
4.2 Conclusions 84
4.3 Suggestions 85
REFERENCES 87
APPENDIX 106
mbers
參考文獻 REFERENCES
[1] Abd-Elaty, I., Kushwaha, N. L., Grismer, M. E., Elbeltagi, A., & Kuriqi, A. (2022). Cost-effective management measures for coastal aquifers affected by saltwater intrusion and climate change. Science of The Total Environment, 836, 155656. https://doi.org/10.1016/j.scitotenv.2022.155656
[2] Arad, A. (1983). A summary of the artesian coastal basin of Guyana. Journal of Hydrology, 63(3), 299-313. https://doi.org/10.1016/0022-1694(83)90047-1
[3] Badan Ghyben, W. (1889). Nota in verband met de voorgenomen putboring nabij Amsterdam. Tijdshrift van het koninklyk Instituut van Ingenieurs, 21.
[4] Bailey, R. T., Khalil, A., & Chatikavanij, V. (2014). Estimating transient freshwater lens dynamics for atoll islands of the Maldives. Journal of hydrology, 515, 247-256. https://doi.org/10.1016/j.jhydrol.2014.04.060
[5] Beck, A. J., Rapaglia, J. P., Cochran, J. K., & Bokuniewicz, H. J. (2007). Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3), 419-441. https://doi.org/10.1016/j.marchem.2007.03.008
[6] Beck, A. J., Rapaglia, J. P., Cochran, J. K., Bokuniewicz, H. J., & Yang, S. (2008). Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes. Marine Chemistry, 109(3), 279-291. https://doi.org/10.1016/j.marchem.2007.07.011
[7] Boudreau, B. P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16), 3139-3142. https://doi.org/10.1016/0016-7037(96)00158-5
[8] Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the irrigation and drainage division, 92(2), 61-88. https://doi.org/10.1061/JRCEA4.0000425
[9] Bullock, E. J., Schaal, I. V., Cardenas, M. B., McClelland, J. W., Henderson, P. B., & Charette, M. A. (2024). Seasonality of submarine groundwater discharge to an Arctic coastal lagoon. Limnology and Oceanography, 69(6), 1429-1438. https://doi.org/10.1002/lno.12585
[10] Burnett, K., Wada, C., Endo, A., & Taniguchi, M. (2017). The economic value of groundwater in Obama. Journal of Hydrology: Regional Studies, 11, 44-52. https://doi.org/10.1016/j.ejrh.2015.10.002
[11] Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1), 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
[12] Burnett, W. C., Peterson, R., Moore, W. S., & de Oliveira, J. (2008). Radon and radium isotopes as tracers of submarine groundwater discharge – Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science, 76(3), 501-511. https://doi.org/10.1016/j.ecss.2007.07.027
[13] Burnett, W. C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojisuporn, P., Rungsupa, S., & Ishitobi, T. (2007). Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research, 27(2), 176-190. https://doi.org/10.1016/j.csr.2006.09.006
[14] Cabral, A., Sugimoto, R., Taniguchi, M., Tait, D., Nakajima, T., Honda, H., & Santos, I. R. (2023). Fresh and saline submarine groundwater discharge as sources of carbon and nutrients to the Japan Sea. Marine Chemistry, 249, 104209. https://doi.org/10.1016/j.marchem.2023.104209
[15] Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., & Kurylyk, B. L. (2022). Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. Water Resources Research, 58(11), e2022WR032614. https://doi.org/10.1029/2022WR032614
[16] Cai, P., Shi, X., Moore, W. S., Peng, S., Wang, G., & Dai, M. (2014). 224Ra: 228Th disequilibrium in coastal sediments: Implications for solute transfer across the sediment–water interface. Geochimica et Cosmochimica Acta, 125, 68-84. https://doi.org/10.1016/j.gca.2013.09.029
[17] Cai, P., Shi, X., Hong, Q., Li, Q., Liu, L., Guo, X., & Dai, M. (2015). Using 224Ra/228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary. Geochimica et Cosmochimica Acta, 170, 188-203. https://doi.org/10.1016/j.gca.2015.08.015
[18] Carnley, M. V., Fulford, J. M., & Brooks, M. H. (2013). Laboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests (2331-1258). https://pubs.usgs.gov/of/2013/1173/
[19] Ceroici, W. J. (1979). Hydrogeology of the Peerless Lake area, Alberta; Alberta Research Council, ARC/AGS Earth Sciences Report 1979-05, 13 p. https://ags.aer.ca/publication/esr-1979-05
[20] CGS. (Central Geological Survey 1990). Explanatory text of the geologic map of Chungli (1: 50,000). Ministry of Economic Affairs, Taipei, Taiwan.
[21] CGS. (Central Geological Survey 2006). Phase III of the Taiwan Regional Groundwater Monitoring Network: Hydrological and Geological Investigation and Research Project for the Year 95 (2006). Study on Stable Hydrogen and Oxygen Isotopes in Groundwater (3/3). Ministry of Economic Affairs, Taipei, Taiwan.
[22] Chang, Y.-L. (2015). Estimating SGD flux in the Pingtung Plain coastal area using Radon and Radium isotopes [Master Degree, National Taiwan University, Taiwan]. https://hdl.handle.net/11296/c7se6s
[23] Chen, C.-T. A., Zhang, J., Peng, T.-R., Kandasamy, S., Wang, D., & Lin, Y.-J. (2018). Submarine groundwater discharge around Taiwan. Acta Oceanologica Sinica, 37(6), 18-22. https://doi.org/10.1007/s13131-018-1216-2
[24] Chen, Y. G., & Liu, T.-K. (1991). Radiocarbon Dates of River Terraces along the Lower Tahanchi, Northern Taiwan:Their Tectonic and Geomorphic Implications. v.34 n.4, 337-347. Retrieved 1991, from http://140.112.114.62/handle/246246/108460
[25] Chen, Z., Huan, G., & Ma, Y. (2006). Computational methods for multiphase flows in porous media. SIAM. https://doi.org/10.1137/1.9780898718942
[26] Chou, C.-B., Weng, M.-C., Huang, H.-P., Chang, Y.-C., Chang, H.-C., & Yeh, T.-Y. (2022). Monitoring the Spring 2021 Drought Event in Taiwan Using Multiple Satellite-Based Vegetation and Water Indices. Atmosphere, 13(9). https://doi.org/10.3390/atmos13091374
[27] Conroy, J. L., Thompson, D. M., Cobb, K. M., Noone, D., Rea, S., & Legrande, A. N. (2017). Spatiotemporal variability in the δ18O-salinity relationship of seawater across the tropical Pacific Ocean. Paleoceanography, 32(5), 484-497. https://doi.org/10.1002/2016PA003073
[28] Cooper, H. H., & Warren, M. A. (1945). The perennial yield of artesian water in the coastal area of Georgia and northeastern Florida. Economic Geology, 40(4), 263-282. https://doi.org/10.2113/gsecongeo.40.4.263
[29] Cooper Jr, H. H. (1959). A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. Journal of Geophysical Research (1896-1977), 64(4), 461-467. https://doi.org/10.1029/JZ064i004p00461
[30] Correa, R. E., Tait, D. R., Sanders, C. J., Conrad, S. R., Harrison, D., Tucker, J. P., Reading, M. J., & Santos, I. R. (2020). Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). Journal of Hydrology, 580, 124262. https://doi.org/10.1016/j.jhydrol.2019.124262
[31] Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., & Pigois, J. P. (2020). Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Scientific Reports, 10(1), 9866. https://doi.org/10.1038/s41598-020-66516-6
[32] Coulon, C., Pryet, A., Lemieux, J.-M., Yrro, B. J. F., Bouchedda, A., Gloaguen, E., Comte, J.-C., Dupuis, J. C., & Banton, O. (2021). A framework for parameter estimation using sharp-interface seawater intrusion models. Journal of Hydrology, 600, 126509. https://doi.org/10.1016/j.jhydrol.2021.126509
[33] Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702-1703. https://doi.org/10.1126/science.133.3465.1702
[34] Dang, M.-Q., Wang, S.-J., Fu, C.-C., & Truong, H.-D. (2024a). Coastal flowing artesian wells and submarine groundwater discharge driven by tidal variation at TaiCOAST site in Taoyuan, Taiwan. Journal of Hydrology: Regional Studies, 52, 101708. https://doi.org/10.1016/j.ejrh.2024.101708
[35] Dang, M. Q., Hsu, F. H., Su, C. C., Wang, S. J., Fu, C. C., & Lin, I. T. (2024b). Investigation of seasonal variations in submarine groundwater discharge using radium isotopes under drought conditions in northwestern coastal Taiwan. Journal of Hydrology, 132450. https://doi.org/10.1016/j.jhydrol.2024.132450
[36] Debnath, P., Das, K., Mukherjee, A., Ghosh, N. C., Rao, S., Kumar, S., Krishan, G., & Joshi, G. (2019). Seasonal-to-diurnal scale isotopic signatures of tidally-influenced submarine groundwater discharge to the Bay of Bengal: Control of hydrological cycle on tropical oceans. Journal of Hydrology, 571, 697-710. https://doi.org/10.1016/j.jhydrol.2019.01.077
[37] Dhal, L., & Swain, S. (2022). Chapter 14 - Understanding and modeling the process of seawater intrusion: a review. In P. K. Gupta, B. Yadav, & S. K. Himanshu (Eds.), Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 269-290). Elsevier. https://doi.org/10.1016/B978-0-12-823830-1.00009-2
[38] Dibaj, M., Javadi, A. A., Akrami, M., Ke, K.-Y., Farmani, R., Tan, Y.-C., & Chen, A. S. (2020). Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeology Journal, 28(6), 2085-2103. https://doi.org/10.1007/s10040-020-02172-4
[39] Diego-Feliu, M., Rodellas, V., Alorda-Kleinglass, A., Tamborski, J., van Beek, P., Heins, L., Bruach, J. M., Arnold, R., & Garcia-Orellana, J. (2020). Guidelines and Limits for the Quantification of Ra Isotopes and Related Radionuclides With the Radium Delayed Coincidence Counter (RaDeCC). Journal of Geophysical Research: Oceans, 125(4), e2019JC015544. https://doi.org/10.1029/2019JC015544
[40] Diego-Feliu, M., Rodellas, V., Saaltink, M. W., Alorda-Kleinglass, A., Goyetche, T., Martinez-Perez, L., Folch, A., & Garcia-Orellana, J. (2021). New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies. Journal of Hydrology, 596, 126043. https://doi.org/10.1016/j.jhydrol.2021.126043
[41] Dimova, N. T., Burnett, W. C., & Speer, K. (2011). A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida. Continental Shelf Research, 31(6), 731-738. https://doi.org/10.1016/j.csr.2011.01.010
[42] Dulaiova, H., & Burnett, W. C. (2008). Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry, 109(3), 395-408. https://doi.org/10.1016/j.marchem.2007.09.001
[43] Dulaiova, H., Camilli, R., Henderson, P. B., & Charette, M. A. (2010). Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. Journal of Environmental Radioactivity, 101(7), 553-563. https://doi.org/10.1016/j.jenvrad.2009.12.004
[44] Duong, Q. T. (2020). Numerical modeling of fresh-seawater interaction induced by tidal variation, a case study at NCU TaiCOAST site in Taoyuan, Taiwan [Master Degree, National Cental University, Taiwan]. http://ir.lib.ncu.edu.tw/handle/987654321/85117
[45] Elsdon, T. S., De Bruin, M. B. N. A., Diepen, N. J., & Gillanders, B. M. (2009). Extensive drought negates human influence on nutrients and water quality in estuaries. Science of The Total Environment, 407(8), 3033-3043. https://doi.org/10.1016/j.scitotenv.2009.01.012
[46] Fang, Y., Qian, J., Zheng, T., Wang, H., Zheng, X., & Walther, M. (2023). Submarine groundwater discharge in response to the construction of subsurface physical barriers in coastal aquifers. Journal of Hydrology, 617, 129010. https://doi.org/10.1016/j.jhydrol.2022.129010
[47] Fang, Y., Zheng, T., Wang, H., Zheng, X., & Walther, M. (2022). Influence of dynamically stable-unstable flow on seawater intrusion and submarine groundwater discharge over tidal and seasonal cycles. Journal of Geophysical Research: Oceans, 127(4), e2021JC018209. https://doi.org/10.1029/2021JC018209
[48] Fang, Y., Zheng, T., Zheng, X., Yang, H., Wang, H., & Walther, M. (2021). Influence of Tide-Induced Unstable Flow on Seawater Intrusion and Submarine Groundwater Discharge. Water Resources Research, 57(4), e2020WR029038. https://doi.org/10.1029/2020WR029038
[49] Ferrarin, C., Rapaglia, J., Zaggia, L., Umgiesser, G., & Zuppi, G. M. (2008). Coincident application of a mass balance of radium and a hydrodynamic model for the seasonal quantification of groundwater flux into the Venice Lagoon, Italy. Marine Chemistry, 112(3), 179-188. https://doi.org/10.1016/j.marchem.2008.08.008
[50] Frings, R. M., Schuttrumpf, H., & Vollmer, S. (2011). Verification of porosity predictors for fluvial sand?gravel deposits. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009690
[51] Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall, Inc, Englewood Cliffs, N. J. .
[52] Fujita, K., Shoji, J., Sugimoto, R., Nakajima, T., Honda, H., Takeuchi, M., Tominaga, O., & Taniguchi, M. (2019). Increase in Fish Production Through Bottom-Up Trophic Linkage in Coastal Waters Induced by Nutrients Supplied via Submarine Groundwater [Original Research]. Frontiers in Environmental Science, 7. https://www.frontiersin.org/articles/10.3389/fenvs.2019.00082
[53] Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek, P., Weinstein, Y., Charette, M., Alorda-Kleinglass, A., Michael, H. A., Stieglitz, T., & Scholten, J. (2021). Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220, 103681. https://doi.org/10.1016/j.earscirev.2021.103681
[54] Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., & Dulaiova, H. (2008). Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry, 109(3), 198-219. https://doi.org/10.1016/j.marchem.2007.11.006
[55] Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., Rodellas, V., Mejias, M., Ballesteros, B., & Dominguez, J. A. (2010). Groundwater and nutrient discharge through karstic coastal springs (<i>Castello</i>, Spain). Biogeosciences, 7(9), 2625-2638. https://doi.org/10.5194/bg-7-2625-2010
[56] George, M. E., Babu, D. S. S., Akhil, T., & Rafeeque, M. K. (2018). Investigation on Submarine Groundwater Discharge at Kozhikkode Coastal Aquifer, SW Western Ghats. Journal of the Geological Society of India, 92(5), 626-633. https://doi.org/10.1007/s12594-018-1077-5
[57] Giffin, C., Kaufman, A., & Broecker, W. (1963). Delayed coincidence counter for the assay of actinon and thoron. Journal of Geophysical Research (1896-1977), 68(6), 1749-1757. https://doi.org/10.1029/JZ068i006p01749
[58] Gilli, E. (2015). Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply. Environmental Earth Sciences, 74(1), 101-113. https://doi.org/10.1007/s12665-015-4042-2
[59] Glover, R. E. (1959). The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research (1896-1977), 64(4), 457-459. https://doi.org/10.1029/JZ064i004p00457
[60] Gonneea, M. E., Morris, P. J., Dulaiova, H., & Charette, M. A. (2008). New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109(3), 250-267. https://doi.org/10.1016/j.marchem.2007.12.002
[61] Green, T. R. (2016). Linking climate change and groundwater. Integrated groundwater management: Concepts, approaches and challenges, 97-141. https://doi.org/10.1007/978-3-319-23576-9_5
[62] Gu, X., Xue, M., Ye, C., Jiao, Y., Han, Y., Wang, W., ... & Liu, B. (2024). Evaluating heterogeneous lacustrine groundwater discharge of Hulun Lake using radium isotopes in Inner Mongolia, China. Journal of Hydrology: Regional Studies, 51, 101650. https://doi.org/10.1016/j.ejrh.2023.101650
[63] Guo, X., Xu, B., Burnett, W. C., Wei, Q., Nan, H., Zhao, S., Charette, M. A., Lian, E., Chen, G., & Yu, Z. (2020). Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary? Science of The Total Environment, 719, 137450. https://doi.org/10.1016/j.scitotenv.2020.137450
[64] Haag, J., Dulai, H., & Burt, W. (2023). The Role of Submarine Groundwater Discharge to the Input of Macronutrients Within a Macrotidal Subpolar Estuary. Estuaries and Coasts, 46(7), 1740-1755. https://doi.org/10.1007/s12237-023-01231-9
[65] Haitjema, H. M., & Mitchell-Bruker, S. (2005). Are Water Tables a Subdued Replica of the Topography? Groundwater, 43(6), 781-786. https://doi.org/10.1111/j.1745-6584.2005.00090.x
[66] Hamlat, A., & Guidoum, A. (2018). Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Applied Water Science, 8(8), 220. https://doi.org/10.1007/s13201-018-0863-y
[67] Hancock, G. J. (1993). The effect of salinity on the concentrations of radium and thorium in sediments. Master′s Thesis, Australian National University, Canberra, Australia https://doi.org/10.25911/5d74e36c30421
[68] Hata, M., Sugimoto, R., Hori, M., Tomiyama, T., & Shoji, J. (2016). Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan. Journal of Sea Research, 111, 47-53. https://doi.org/10.1016/j.seares.2016.01.009
[69] Heard, J., Tung, W.-C., Pei, Y.-D., Lin, T.-H., Lin, C.-H., Akamatsu, T., & Wen, C. K. C. (2021). Coastal development threatens Datan area supporting greatest fish diversity at Taoyuan Algal Reef, northwestern Taiwan. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(3), 590-604. https://doi.org/10.1002/aqc.3477
[70] Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, in" Seawater in Coastal Aquifers". US Geological Survey, Water Supply Paper, 1613, C70-C80.
[71] Hermides, D., Zaxariadis, D., & Stamatis, G. (2020). Hydrochemical characteristics of the Oropos coastal aquifers, Attica, Greece. Bulletin of the Geological Society of Greece, 56(1), 39-55. https://doi.org/10.12681/bgsg.20939
[72] Herzberg, A. (1901). Die wasserversorgung einiger Nordseebader. J. Gasbeleucht. Wasserversorg., 44, 815-819.
[73] Hou, Y., Yang, J., Russoniello, C. J., Zheng, T., Wu, M.-l., & Yu, X. (2022). Impacts of coastal shirmp ponds on saltwater intrusion and submarine groundwater discharge. Water Resources Research, 58(7), e2021WR031866. https://doi.org/10.1029/2021WR031866
[74] Hsieh, Y., Shiao, J.-C., Lin, S.-w., & Iizuka, Y. (2019). Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: An example of a euryhaline fish Lateolabrax japonicus. Rapid Communications in Mass Spectrometry, 33(16), 1344-1354. https://doi.org/10.1002/rcm.8476
[75] Hsu, F.-H. (2018). Submarine groundwater discharge along the coast of the Taiwan Strait indicated by source and sink transport of radium. [Doctoral Dissertation, National Taiwan University, Taiwan]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69859
[76] Hsu, F.-H., Su, C.-C., Wang, P.-L., & Lin, I.-T. (2020). Temporal Variations of Submarine Groundwater Discharge into a Tide-Dominated Coastal Wetland (Gaomei Wetland, Western Taiwan) Indicated by Radon and Radium Isotopes. Water, 12(6). https://doi.org/10.3390/w12061806
[77] Huang, C.-K. (2015). Using radon and radium isotopes to estimate submarine groundawter discharge flux in Yilan bay [Master Degree, National Taiwan University, Taiwan]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53014
[78] Huang, K.-F., You, C.-F., Chung, C.-H., & Lin, I.-T. (2011). Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochemistry, Geophysics, Geosystems, 12(5). https://doi.org/10.1029/2010GC003372
[79] Huang, P.-S., & Chiu, Y.-C. (2018). A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water, 10(3). https://doi.org/10.3390/w10030251
[80] Huang, S.-L., Lee, Y.-C., Budd, W. W., & Yang, M.-C. (2012). Analysis of Changes in Farm Pond Network Connectivity in the Peri-Urban Landscape of the Taoyuan Area, Taiwan. Environmental Management, 49(4), 915-928. https://doi.org/10.1007/s00267-012-9824-7
[81] Hwang, D. W., Lee, I. S., Choi, M., & Kim, T. H. (2016). Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222Rn-Si mass balance model. Marine Pollution Bulletin, 110(1), 119-126. https://doi.org/10.1016/j.marpolbul.2016.06.073
[82] Ibanhez, J. S. P., Alvarez-Salgado, X. A., Nieto-Cid, M., & Rocha, C. (2021). Fresh and saline submarine groundwater discharge in a large coastal inlet affected by seasonal upwelling. Limnology and Oceanography, 66(6), 2141-2158. https://doi.org/10.1002/lno.11733
[83] Ji, Z., Hu, D., Weng, H., Zhang, F., & Han, Z. (2012). Temporal and spatial variations of 226Ra in coastal sea and the estimation of submarine groundwater discharge (SGD). Geochimica, 42(1), 15-22.
[84] Juan, Y.-K., Chen, Y., & Lin, J.-M. (2016). Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan. Water, 8(11). https://doi.org/10.3390/w8110546
[85] Kao, R.-C., Zavialov, P. O., & Ding, C.-F. (2013). Investigation and assessment of submarine groundwater discharge of Ping-Tung nearshore area in southwestern Taiwan. Irrigation and Drainage, 62(S1), 10-17. https://doi.org/10.1002/ird.1789
[86] Kacimov, A. R., & Obnosov, Y. V. (2016). Size and shape of steady seawater intrusion and sharp-interface wedge: the polubarinova-kochina analytical solution to the dam problem revisited. Journal of Hydrologic Engineering, 21(8), 06016005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001385
[87] Kazakis, N., Spiliotis, M., Voudouris, K., Pliakas, F.-K., & Papadopoulos, B. (2018). A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Science of The Total Environment, 621, 524-534. https://doi.org/10.1016/j.scitotenv.2017.11.235
[88] Koohbor, B., Fahs, M., Ataie-Ashtiani, B., Belfort, B., Simmons, C. T., & Younes, A. (2019). Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters. Journal of Hydrology, 571, 159-177. https://doi.org/10.1016/j.jhydrol.2019.01.052
[89] Kim, G., Lee, K.-K., Park, K.-S., Hwang, D.-W., & Yang, H.-S. (2003). Large submarine groundwater discharge (SGD) from a volcanic island. Geophysical Research Letters, 30(21). https://doi.org/10.1029/2003GL018378
[90] Kiran Kumar, P., Singh, A., & Ramesh, R. (2018). Controls on δ18O, δD and δ18O-salinity relationship in the northern Indian Ocean. Marine Chemistry, 207, 55-62. https://doi.org/10.1016/j.marchem.2018.10.010
[91] Knee, K. L., Garcia-Solsona, E., Garcia-Orellana, J., Boehm, A. B., & Paytan, A. (2011). Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis. Limnology and Oceanography: Methods, 9(9), 380-395. https://doi.org/10.4319/lom.2011.9.380
[92] Kohout, F. A. (1966). Submarine springs : A neglected phenomenon of coastal hydrology. Hydrology, 26, 391-413. https://cir.nii.ac.jp/crid/1570009750197475968
[93] Koussis, A. D., Mazi, K., & Destouni, G. (2012). Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge. Journal of Hydrology, 416-417, 1-11. https://doi.org/10.1016/j.jhydrol.2011.11.012
[94] Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010678
[95] Kumar, A., Rout, S., Pulhani, V., & Kumar, A. V. (2020). A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades. Journal of Radioanalytical and Nuclear Chemistry, 323(1), 13-26. https://doi.org/10.1007/s10967-019-06930-x
[96] Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Cho, H.-M., DeVries, T., Sarmiento, J. L., Charette, M. A., & Cho, Y.-K. (2014). Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23), 8438-8444. https://doi.org/10.1002/2014GL061574
[97] Lambert, M. J., & Burnett, W. C. (2003). Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66(1), 55-73. https://doi.org/10.1023/B:BIOG.0000006057.63478.fa
[98] Li, Y., Zhang, B., Shi, L., & Ye, Y. (2019). Dynamic variation characteristics of seawater intrusion in underground water-sealed oil storage cavern under island tidal environment. Water, 11(1). https://doi.org/10.3390/w11010130
[99] Lecher, A. L., & Mackey, K. R. M. (2018). Synthesizing the Effects of Submarine Groundwater Discharge on Marine Biota. Hydrology, 5(4). https://doi.org/10.3390/hydrology5040060
[100] Li, Y.-H., & Chan, L.-H. (1979). Desorption of Ba and226Ra from river-borne sediments in the Hudson estuary. Earth and Planetary Science Letters, 43(3), 343-350. https://doi.org/10.1016/0012-821X(79)90089-X
[101] Li, Y.-H., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5), 703-714. https://doi.org/10.1016/0016-7037(74)90145-8
[102] Lin, I.-T., Wang, C.-H., Lin, S., & Chen, Y.-G. (2011). Groundwater–seawater interactions off the coast of southern Taiwan: Evidence from environmental isotopes. Journal of Asian Earth Sciences, 41(3), 250-262. https://doi.org/10.1016/j.jseaes.2011.03.001
[103] Lin, I.-T., Wang, C.-H., You, C.-F., Lin, S., Huang, K.-F., & Chen, Y.-G. (2010). Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Marine Chemistry, 122(1), 51-58. https://doi.org/10.1016/j.marchem.2010.08.007
[104] Lin, Y.-S., Lin, Y.-W., Wang, Y., Chen, Y.-G., Hsu, M.-L., Chiang, S.-H., & Chen, Z.-S. (2007). Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan–Hukou Tableland, Northwestern Taiwan. Geomorphology, 90(1), 36-54. https://doi.org/10.1016/j.geomorph.2007.01.013
[105] Lino, Y., Udayashankar, H. N., Suresh Babu, D. S., Ramasamy, M., & Balakrishna, K. (2023). Large submarine groundwater discharges to the Arabian Sea from tropical southwestern Indian Coast: Measurements from seepage meters deployed during the low tide. Journal of Hydrology, 620, 129394. https://doi.org/10.1016/j.jhydrol.2023.129394
[106] Liou, Y.-A., Wang, T.-S., & Chan, H.-P. (2013). Impacts of Pond Change on the Regional Sustainability of Water Resources in Taoyuan, Taiwan. Advances in Meteorology, 2013, 243456. https://doi.org/10.1155/2013/243456
[107] Liu, Y., Jiao, J. J., Mao, R., Luo, X., Liang, W., & Robinson, C. E. (2019). Spatial Characteristics Reveal the Reactive Transport of Radium Isotopes (224Ra, 223Ra, and 228Ra) in an Intertidal Aquifer. Water Resources Research, 55(12), 10282-10302. https://doi.org/10.1029/2019WR024849
[108] Luek, J. L., & Beck, A. J. (2014). Radium budget of the York River estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member. Marine Chemistry, 165, 55-65. https://doi.org/10.1016/j.marchem.2014.08.001
[109] Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications, 11(1), 1260. https://doi.org/10.1038/s41467-020-15064-8
[110] Matsuura, T., Tebakari, T., Oda, A., & Ueda, A. (2021). Flow characteristics of artesian groundwater in coastal area of Kurobe River basin, Toyama Prefecture, by long-term and spatial observation of water temperature and electric conductivity. Groundwater for Sustainable Development, 13, 100555. https://doi.org/10.1016/j.gsd.2021.100555
[111] Martinez-Moreno, F. J., Monteiro-Santos, F. A., Bernardo, I., Farzamian, M., Nascimento, C., Fernandes, J., Casal, B., & Ribeiro, J. A. (2017). Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data. Journal of Hydrology, 552, 609-619. https://doi.org/10.1016/j.jhydrol.2017.07.026
[112] Mastrocicco, M., Colombani, N., & Antonellini, M. (2012). Freshwater–seawater mixing experiments in sand columns. Journal of Hydrology, 448-449, 112-118. https://doi.org/10.1016/j.jhydrol.2012.04.046
[113] McCoy, C. A., & Corbett, D. R. (2009). Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications. Journal of Environmental Management, 90(1), 644-651. https://doi.org/10.1016/j.jenvman.2008.03.002
[114] Meinzer, O. E. (1923). The occurrence of ground water in the United States, with a discussion of principles [Report](489). (Water Supply Paper, Issue. U. S. G. P. Office. https://pubs.usgs.gov/publication/wsp489
[115] Men, W., Jiang, Y., Liu, G., Wang, F., & Zhang, Y. (2016). Study of water mixing in the coastal waters of the western Taiwan Strait based on radium isotopes. Journal of Environmental Radioactivity, 152, 16-22. https://doi.org/10.1016/j.jenvrad.2015.11.003
[116] Meyer, F. W. (1971). Saline artesian water as a supplement. Journal AWWA, 63(2), 65-71. https://doi.org/10.1002/j.1551-8833.1971.tb04029.x
[117] Michael, H. A., Mulligan, A. E., & Harvey, C. F. (2005). Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054), 1145-1148. https://doi.org/10.1038/nature03935
[118] Milanovic, P. (2004). Water resources engineering in karst. CRC press. https://doi.org/10.1201/9780203499443
[119] Moore, W. S. (1976). Sampling 228Ra in the deep ocean. Deep Sea Research and Oceanographic Abstracts, 23(7), 647-651. https://doi.org/10.1016/0011-7471(76)90007-3
[120] Moore, W. S. (1984). Radium isotope measurements using germanium detectors. Nuclear Instruments and Methods in Physics Research, 223(2), 407-411. https://doi.org/10.1016/0167-5087(84)90683-5
[121] Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575), 612-614. https://doi.org/10.1038/380612a0
[122] Moore, W. S. (2000a). Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research: Oceans, 105(C9), 22117-22122. https://doi.org/10.1029/1999JC000289
[123] Moore, W. S. (2000b). Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 20(15), 1993-2007. https://doi.org/10.1016/S0278-4343(00)00054-6
[124] Moore, W. S. (2006). Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 26(7), 852-861. https://doi.org/10.1016/j.csr.2005.12.004
[125] Moore, W. S. (2008). Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 109(3), 188-197. https://doi.org/10.1016/j.marchem.2007.06.015
[126] Moore, W. S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science, 2(Volume 2, 2010), 59-88. https://doi.org/10.1146/annurev-marine-120308-081019
[127] Moore, W. S., & Arnold, R. (1996). Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1), 1321-1329. https://doi.org/10.1029/95JC03139
[128] Moore, W. S., Blanton, J. O., & Joye, S. B. (2006). Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9). https://doi.org/10.1029/2005JC003041
[129] Moore, W. S., & Cai, P. (2013). Calibration of RaDeCC systems for 223Ra measurements. Marine Chemistry, 156, 130-137. https://doi.org/10.1016/j.marchem.2013.03.002
[130] Momejian, N., Abou Najm, M., Alameddine, I., & El-Fadel, M. (2019a). Can groundwater vulnerability models assess seawater intrusion? Environmental Impact Assessment Review, 75, 13-26. https://doi.org/10.1016/j.eiar.2018.10.003
[131] Momejian, N., Abou Najm, M., Alameddine, I., & El-Fadel, M. (2019b). Groundwater vulnerability modeling to assess seawater intrusion: a methodological comparison with geospatial interpolation. Water Resources Management, 33(3), 1039-1052. https://doi.org/10.1007/s11269-018-2165-4
[132] Moosdorf, N., & Oehler, T. (2017). Societal use of fresh submarine groundwater discharge: An overlooked water resource. Earth-Science Reviews, 171, 338-348. https://doi.org/10.1016/j.earscirev.2017.06.006
[133] Murgulet, D., Lopez, C. V., & Douglas, A. R. (2022). Radioactive and stable isotopes reveal variations in nearshore submarine groundwater discharge composition and magnitude across low inflow northwestern Gulf of Mexico estuaries. Science of the Total Environment, 823, 153814. https://doi.org/10.1016/j.scitotenv.2022.153814
[134] Mulligan, A. E., & Charette, M. A. (2006). Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. Journal of Hydrology, 327(3-4), 411-425. https://doi.org/10.1016/j.jhydrol.2005.11.056
[135] Nakajima, T., Kuragano, M., Yamada, M., & Sugimoto, R. (2024). Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway. Science of The Total Environment, 908, 168068. https://doi.org/10.1016/j.scitotenv.2023.168068
[136] Nakajima, T., Sugimoto, R., Tominaga, O., Takeuchi, M., Honda, H., Shoji, J., & Taniguchi, M. (2018). Fresh and Recirculated Submarine Groundwater Discharge Evaluated by Geochemical Tracers and a Seepage Meter at Two Sites in the Seto Inland Sea, Japan. Hydrology, 5(4). https://doi.org/10.3390/hydrology5040061
[137] Negrel, P., Millot, R., Guerrot, C., Petelet-Giraud, E., Brenot, A., & Malcuit, E. (2012). Heterogeneities and interconnections in groundwaters: Coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France). Chemical Geology, 296-297, 83-95. https://doi.org/10.1016/j.chemgeo.2011.12.022
[138] Nicholas, C. W. N., Li, C., Wang, C., Guo, Y., Duan, Z., Su, N., & Yang, S. (2023). Bedrock (234U/238U) disequilibrium and its impact on inferring sediment comminution age in Taiwan Island. Applied Geochemistry, 149, 105550. https://doi.org/10.1016/j.apgeochem.2022.105550
[139] Niencheski, L. F. H., Windom, H. L., Moore, W. S., & Jahnke, R. A. (2007). Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Marine Chemistry, 106(3), 546-561. https://doi.org/10.1016/j.marchem.2007.06.004
[140] Panthi, J., Pradhanang, S. M., Nolte, A., & Boving, T. B. (2022). Saltwater intrusion into coastal aquifers in the contiguous United States — A systematic review of investigation approaches and monitoring networks. Science of The Total Environment, 836, 155641. https://doi.org/10.1016/j.scitotenv.2022.155641
[141] Peng, K., Heiss, J. W., Xie, X., Yan, L., Deng, Y., Gan, Y., Li, Q., & Zhang, Y. (2023). Groundwater discharge and saltwater-freshwater mixing in a mangrove wetland over tidal cycles: A field and modeling study. Journal of Hydrology, 620, 129472. https://doi.org/10.1016/j.jhydrol.2023.129472
[142] Peng, T.-R., Chen, C.-T. A., Wang, C.-H., Zhang, J., & Lin, Y.-J. (2008). Assessment of terrestrial factors controlling the submarine groundwater discharge in water shortage and highly deformed Island of Taiwan, Western Pacific Ocean. Journal of Oceanography, 64(2), 323-337. https://doi.org/10.1007/s10872-008-0026-0
[143] Peng, T.-R., Huang, C.-C., Wang, C.-H., Liu, T.-K., Lu, W.-C., & Chen, K.-Y. (2012). Using oxygen, hydrogen, and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. Journal of Hydrology, 450-451, 105-116. https://doi.org/10.1016/j.jhydrol.2012.05.021
[144] Pereira, L., Feddes, R., Gilley, J., & Lesaffre, B. (2013). Sustainability of irrigated agriculture (Vol. 312). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-94-015-8700-6
[145] Porcelli, D. (2008). Chapter 4 Investigating Groundwater Processes Using U- and Th-Series Nuclides. In S. Krishnaswami & J. K. Cochran (Eds.), Radioactivity in the Environment (Vol. 13, pp. 105-153). Elsevier. https://doi.org/10.1016/S1569-4860(07)00004-6
[146] Post, V. E., Bosserelle, A. L., Galvis, S. C., Sinclair, P. J., & Werner, A. D. (2018). On the resilience of small-island freshwater lenses: Evidence of the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. Journal of Hydrology, 564, 133-148. https://doi.org/10.1016/j.jhydrol.2018.06.015
[147] Povinec, P. P., De Oliveira, J., Braga, E. D. S., Comanducci, J. F., Gastaud, J., Groening, M., ... & Top, Z. (2008). Isotopic, trace element and nutrient characterization of coastal waters from Ubatuba inner shelf area, south-eastern Brazil. Estuarine, Coastal and Shelf Science, 76(3), 522-542. https://doi.org/10.1016/j.ecss.2007.07.041
[148] Prakash, R., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., Vinnarasi, F., Ponnumani, G., Chidambaram, S., & Anandhan, P. (2018). Radon isotope assessment of submarine groundwater discharge (SGD) in Coleroon River Estuary, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 25-36. https://doi.org/10.1007/s10967-018-5877-2
[149] Rahaman, W., & Singh, S. K. (2012). Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge. Geochimica et Cosmochimica Acta, 85, 275-288. https://doi.org/10.1016/j.gca.2012.02.025
[150] Reich, C. D. (2010). Investigation of submarine groundwater discharge along the tidal reach of the Caloosahatchee River, southwest Florida [Report](2009-1273). (Open-File Report, Issue. U. S. G. Survey. https://pubs.usgs.gov/publication/ofr20091273
[151] Robinson, C., Li, L., & Prommer, H. (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005679
[152] Rodellas, V., Garcia-Orellana, J., Masque, P., & Font-Munoz, J. S. (2015). The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Marine Chemistry, 171, 107-117. https://doi.org/10.1016/j.marchem.2015.02.010
[153] Rogers, G. D., & Moore, D. R. (1997). Drilling, Sampling, and Construction of Monitoring Wells Under Flowing Artesian Conditions. Environmental & Engineering Geoscience, III(3), 369-373. https://doi.org/10.2113/gseegeosci.III.3.369
[154] Sheibani, S., Ataie-Ashtiani, B., Safaie, A., & Simmons, C. T. (2020). Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran. Journal of Hydrology, 588, 125110. https://doi.org/10.1016/j.jhydrol.2020.125110
[155] Shafabakhsh, P., Fahs, M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Unstable density-driven flow in fractured porous media: the fractured elder problem. Fluids, 4(3). https://doi.org/10.3390/fluids4030168
[156] Santos, I. R., Burnett, W. C., Chanton, J., Mwashote, B., Suryaputra, I. G. N. A., & Dittmar, T. (2008a). Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnology and Oceanography, 53(2), 705-718. https://doi.org/10.4319/lo.2008.53.2.0705
[157] Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., Tamborski, J., Cho, H.-M., Dimova, N., Sugimoto, R., Bonaglia, S., Li, H., Hajati, M.-C., & Li, L. (2021). Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5), 307-323. https://doi.org/10.1038/s43017-021-00152-0
[158] Santos, I. R., Niencheski, F., Burnett, W., Peterson, R., Chanton, J., Andrade, C. F. F., Milani, I. B., Schmidt, A., & Knoeller, K. (2008b). Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. Journal of Hydrology, 353(3), 275-293. https://doi.org/10.1016/j.jhydrol.2008.02.010
[159] Scholten, J. C., Pham, M. K., Blinova, O., Charette, M. A., Dulaiova, H., & Eriksson, M. (2010). Preparation of Mn-fiber standards for the efficiency calibration of the delayed coincidence counting system (RaDeCC). Marine Chemistry, 121(1), 206-214. https://doi.org/10.1016/j.marchem.2010.04.009
[160] Schiavo, M. A., Hauser, S., & Povinec, P. P. (2009). Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. Journal of Hydrology, 364(1-2), 40-49. https://doi.org/10.1016/j.jhydrol.2008.10.005
[161] Selvam, S., Muthukumar, P., Sajeev, S., Venkatramanan, S., Chung, S. Y., Brindha, K., Babu, D. S. S., & Murugan, R. (2021). Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geoscience Frontiers, 12(1), 29-38. https://doi.org/10.1016/j.gsf.2020.06.012
[162] Shaw, R. D., & Prepas, E. E. (1990). Groundwater-lake interactions: I. Accuracy of seepage meter estimates of lake seepage. Journal of Hydrology, 119(1), 105-120. https://doi.org/10.1016/0022-1694(90)90037-X
[163] Sholkovitz, E., Herbold, C., & Charette, M. (2003). An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnology and Oceanography: Methods, 1(1), 16-28. https://doi.org/10.4319/lom.2003.1.16
[164] Stieglitz, T., Rapaglia, J., & Bokuniewicz, H. (2008). Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements. Journal of Geophysical Research: Oceans, 113(C8). https://doi.org/10.1029/2007JC004499
[165] Stringfield, V. T., Warren, M. A., & Cooper, H. H. (1941). Artesian water in the coastal area of Georgia and northeastern Florida. Economic Geology, 36(7), 698-711. https://doi.org/10.2113/gsecongeo.36.7.698
[166] Su, W., Ma, Y., Wang, Q., Yan, Q., Lu, X., Ma, Z., Yi, L., Liu, X., Chen, F., Han, F., & Xu, Z. (2022). Effects of salinity and particle size on radium desorption from river sediments in the Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 241, 106771. https://doi.org/10.1016/j.jenvrad.2021.106771
[167] Sugimoto, R., Honda, H., Kobayashi, S., Takao, Y., Tahara, D., Tominaga, O., & Taniguchi, M. (2016). Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan). Estuaries and Coasts, 39(1), 13-26. https://doi.org/10.1007/s12237-015-9986-7
[168] Swarzenski, P. W., Reich, C., Kroeger, K. D., & Baskaran, M. (2007). Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Marine Chemistry, 104(1), 69-84. https://doi.org/10.1016/j.marchem.2006.08.001
[169] Taniguchi, M. (1995). Change in Groundwater Seepage Rate into Lake Biwa. Japanese Journal of Limnology (Rikusuigaku Zasshi), 56(4), 261-267. https://doi.org/10.3739/rikusui.56.261
[170] Taniguchi, M. (2002). Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 29(12), 2-1-2-3. https://doi.org/10.1029/2002GL014987
[171] Taniguchi, M., Burnett, W. C., Dulaiova, H., Siringan, F., Foronda, J., Wattayakorn, G., Rungsupa, S., Kontar, E. A., & Ishitobi, T. (2008). Groundwater Discharge as an Important Land-Sea Pathway into Manila Bay, Philippines. Journal of Coastal Research(24 (10024)), 15-24. https://doi.org/10.2112/06-0636.1
[172] Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N., & Burnett, W. C. (2019). Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects [Review]. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00141
[173] Taniguchi, M., & Fukuo, Y. (1993). Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter. Groundwater, 31(4), 675-679. https://doi.org/10.1111/j.1745-6584.1993.tb00601.x
[174] Taniguchi, M., Ishitobi, T., Burnett, W. C., & Wattayakorn, G. (2007). Evaluating Ground Water–Sea Water Interactions via Resistivity and Seepage Meters. Groundwater, 45(6), 729-735. https://doi.org/10.1111/j.1745-6584.2007.00343.x
[175] Taniguchi, M., Nakayama, T., Tase, N., & Shimada, J. (2000). Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan. Hydrological Processes, 14(3), 539-556. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<539::AID-HYP953>3.0.CO;2-L
[176] Tebakari, T., Mizoguchi, T., Motoyoshi, Y., & Zhang, J. (2013). Discharge and water quality characteristics of flowing artesian wells in the Kurobe river alluvial fan, Japan. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 69(4), I_589-I_594. https://doi.org/10.2208/jscejhe.69.I_589
[177] Uen, T.-S., Chang, F.-J., Zhou, Y., & Tsai, W.-P. (2018). Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Science of The Total Environment, 633, 341-351. https://doi.org/10.1016/j.scitotenv.2018.03.172
[178] Utsunomiya, T., Hata, M., Sugimoto, R., Honda, H., Kobayashi, S., Miyata, Y., Yamada, M., Tominaga, O., Shoji, J., & Taniguchi, M. (2017). Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan. Journal of Hydrology: Regional Studies, 11, 139-146. https://doi.org/10.1016/j.ejrh.2015.11.012
[179] Voss, C. I., Simmons, C. T., & Robinson, N. I. (2010). Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box. Hydrogeology Journal, 18(1), 5-23. https://doi.org/10.1007/s10040-009-0556-6
[180] Wang, C.-H., Kuo, C.-H., Peng, T.-R., Chen, W.-F., Liu, T.-K., Chiang, C.-J., Liu, W.-C., & Hung, J.-J. (2001). Isotope characteristics of Taiwan groundwaters. Western Pacific Earth Sciences, 1(4), 415-428.
[181] Wang, Q., Li, H., Zhang, Y., Wang, X., Zhang, C., Xiao, K., & Qu, W. (2019). Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China. Science of The Total Environment, 695, 133873. https://doi.org/10.1016/j.scitotenv.2019.133873
[182] Wang, Q., Wang, X., Xiao, K., Zhang, Y., Luo, M., Zheng, C., & Li, H. (2021a). Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes. Geoscience Frontiers, 12(5), 101223. https://doi.org/10.1016/j.gsf.2021.101223
[183] Wang, Q., Zhang, X., Wang, X., Xiao, K., Zhang, Y., Wang, L., Kuang, X., & Li, H. (2021b). Quantification of the water age and submarine groundwater discharge in a typical semi-enclosed bay using stable oxygen (18O) and radioactive radium (228Ra) isotopes. Journal of Hydrology, 603, 127088. https://doi.org/10.1016/j.jhydrol.2021.127088
[184] Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y. F., & Tseng, H.-W. (2021). Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water, 13(9). https://doi.org/10.3390/w13091153
[185] Wang, X., Zhang, F., Du, J., Hong, G. H., & Chen, X. (2023). Anthropogenic As pollution mediated by submarine groundwater discharge in a marine ranch. Marine Pollution Bulletin, 196, 115681. https://doi.org/10.1016/j.marpolbul.2023.115681
[186] Wang, Y. H., Ger, T. H., Lou, J. R., & Chang Chien, C. T. (2022). Water-saving Strategies in the Face of Water Shortage Crisis: A Case Study of Science Museum in Taiwan. IOP Conference Series: Earth and Environmental Science, 987(1), 012014. https://doi.org/10.1088/1755-1315/987/1/012014
[187] Webster, I. T., Hancock, G. J., & Murray, A. S. (1995). Modelling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta, 59(12), 2469-2476. https://doi.org/10.1016/0016-7037(95)00141-7
[188] Welber, M., Le Coz, J., Laronne, J. B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A., & Salvaro, M. (2016). Field assessment of noncontact stream gauging using portable surface velocity radars (SVR). Water Resources Research, 52(2), 1108-1126. https://doi.org/10.1002/2015WR017906
[189] Werner, A. D. (2017). Correction factor to account for dispersion in sharp-interface models of terrestrial freshwater lenses and active seawater intrusion. Advances in Water Resources, 102, 45-52. https://doi.org/10.1016/j.advwatres.2017.02.001
[190] Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3-26. https://doi.org/10.1016/j.advwatres.2012.03.004
[191] Worts, G. F. (1965). A brief appraisal of ground-water conditions in the Coastal Artesian Basin of British Guiana, South America [Report](1663B). (Water Supply Paper, Issue. G. P. O. U.S. https://pubs.usgs.gov/publication/wsp1663B
[192] WRA. (Water Resources Agency 2021). Hydrological Year Book of Taiwan. Part II - River stage and discharge (Water Resources Agency, Ministry of Economic Affairs). https://gweb.wra.gov.tw/wrhygis/ebooks/hybbook.asp
[193] WRA. (Water Resources Agency 2023). Preliminary Potential Analysis of Submarine Groundwater Discharge in Taoyuan Coastal Area. Ministry of Economic Affairs, Taipei, Taiwan.
[194] Wu, H., Lu, C., Shen, C., & Ye, Y. (2023). Using a subsurface barrier to control seawater intrusion and enhance groundwater extraction in coastal aquifers: An analytical study. Journal of Hydrology, 621, 129537. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129537
[195] Xu, B.-C., Dimova, N. T., Zhao, L., Jiang, X.-Y., & Yu, Z.-G. (2013). Determination of water ages and flushing rates using short-lived radium isotopes in large estuarine system, the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science, 121-122, 61-68. https://doi.org/10.1016/j.ecss.2013.02.005
[196] Yi, L., Dong, N., Zhang, L., Xiao, G., Wang, H., & Jiang, X. (2019). Radium isotopes distribution and submarine groundwater discharge in the Bohai Sea. Groundwater for Sustainable Development, 9, 100242. https://doi.org/10.1016/j.gsd.2019.100242
[197] Zavialov, P. O., Kao, R. C., Kremenetskiy, V. V., Peresypkin, V. I., Ding, C. F., Hsu, J. T., Kopelevich, O. V., Korotenko, K. A., Wu, Y. S., & Chen, P. (2012). Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan. Continental Shelf Research, 34, 18-25. https://doi.org/10.1016/j.csr.2011.11.010
[198] Zhang, B., & Zhang, J. (2021). The hydrological connection between fresh submarine groundwater discharge and coastal groundwater: an isotopic and a decadal hydrochemistry approach in an alluvial fan, central Japan. Environmental Earth Sciences, 80(18), 618. https://doi.org/10.1007/s12665-021-09917-8
[199] Zhou, F., Wu, J., Chen, F., Chen, C., Zhu, Q., Lao, Q., Zhou, X., & Lu, X. (2022). Using Stable Isotopes (δ18O and δD) to Study the Dynamics of Upwelling and Other Oceanic Processes in Northwestern South China Sea. Journal of Geophysical Research: Oceans, 127(1), e2021JC017972. https://doi.org/10.1029/2021JC017972
[200] Zhou, Y., Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2019). Fresh Submarine Groundwater Discharge to the Near-Global Coast. Geophysical Research Letters, 46(11), 5855-5863. https://doi.org/10.1029/2019GL082749
指導教授 王士榮 傅慶州(Shih-Jung Wang Ching-Chou Fu) 審核日期 2025-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明