參考文獻 |
REFERENCES
[1] Abd-Elaty, I., Kushwaha, N. L., Grismer, M. E., Elbeltagi, A., & Kuriqi, A. (2022). Cost-effective management measures for coastal aquifers affected by saltwater intrusion and climate change. Science of The Total Environment, 836, 155656. https://doi.org/10.1016/j.scitotenv.2022.155656
[2] Arad, A. (1983). A summary of the artesian coastal basin of Guyana. Journal of Hydrology, 63(3), 299-313. https://doi.org/10.1016/0022-1694(83)90047-1
[3] Badan Ghyben, W. (1889). Nota in verband met de voorgenomen putboring nabij Amsterdam. Tijdshrift van het koninklyk Instituut van Ingenieurs, 21.
[4] Bailey, R. T., Khalil, A., & Chatikavanij, V. (2014). Estimating transient freshwater lens dynamics for atoll islands of the Maldives. Journal of hydrology, 515, 247-256. https://doi.org/10.1016/j.jhydrol.2014.04.060
[5] Beck, A. J., Rapaglia, J. P., Cochran, J. K., & Bokuniewicz, H. J. (2007). Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3), 419-441. https://doi.org/10.1016/j.marchem.2007.03.008
[6] Beck, A. J., Rapaglia, J. P., Cochran, J. K., Bokuniewicz, H. J., & Yang, S. (2008). Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes. Marine Chemistry, 109(3), 279-291. https://doi.org/10.1016/j.marchem.2007.07.011
[7] Boudreau, B. P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16), 3139-3142. https://doi.org/10.1016/0016-7037(96)00158-5
[8] Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the irrigation and drainage division, 92(2), 61-88. https://doi.org/10.1061/JRCEA4.0000425
[9] Bullock, E. J., Schaal, I. V., Cardenas, M. B., McClelland, J. W., Henderson, P. B., & Charette, M. A. (2024). Seasonality of submarine groundwater discharge to an Arctic coastal lagoon. Limnology and Oceanography, 69(6), 1429-1438. https://doi.org/10.1002/lno.12585
[10] Burnett, K., Wada, C., Endo, A., & Taniguchi, M. (2017). The economic value of groundwater in Obama. Journal of Hydrology: Regional Studies, 11, 44-52. https://doi.org/10.1016/j.ejrh.2015.10.002
[11] Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1), 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
[12] Burnett, W. C., Peterson, R., Moore, W. S., & de Oliveira, J. (2008). Radon and radium isotopes as tracers of submarine groundwater discharge – Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science, 76(3), 501-511. https://doi.org/10.1016/j.ecss.2007.07.027
[13] Burnett, W. C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojisuporn, P., Rungsupa, S., & Ishitobi, T. (2007). Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research, 27(2), 176-190. https://doi.org/10.1016/j.csr.2006.09.006
[14] Cabral, A., Sugimoto, R., Taniguchi, M., Tait, D., Nakajima, T., Honda, H., & Santos, I. R. (2023). Fresh and saline submarine groundwater discharge as sources of carbon and nutrients to the Japan Sea. Marine Chemistry, 249, 104209. https://doi.org/10.1016/j.marchem.2023.104209
[15] Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., & Kurylyk, B. L. (2022). Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. Water Resources Research, 58(11), e2022WR032614. https://doi.org/10.1029/2022WR032614
[16] Cai, P., Shi, X., Moore, W. S., Peng, S., Wang, G., & Dai, M. (2014). 224Ra: 228Th disequilibrium in coastal sediments: Implications for solute transfer across the sediment–water interface. Geochimica et Cosmochimica Acta, 125, 68-84. https://doi.org/10.1016/j.gca.2013.09.029
[17] Cai, P., Shi, X., Hong, Q., Li, Q., Liu, L., Guo, X., & Dai, M. (2015). Using 224Ra/228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary. Geochimica et Cosmochimica Acta, 170, 188-203. https://doi.org/10.1016/j.gca.2015.08.015
[18] Carnley, M. V., Fulford, J. M., & Brooks, M. H. (2013). Laboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests (2331-1258). https://pubs.usgs.gov/of/2013/1173/
[19] Ceroici, W. J. (1979). Hydrogeology of the Peerless Lake area, Alberta; Alberta Research Council, ARC/AGS Earth Sciences Report 1979-05, 13 p. https://ags.aer.ca/publication/esr-1979-05
[20] CGS. (Central Geological Survey 1990). Explanatory text of the geologic map of Chungli (1: 50,000). Ministry of Economic Affairs, Taipei, Taiwan.
[21] CGS. (Central Geological Survey 2006). Phase III of the Taiwan Regional Groundwater Monitoring Network: Hydrological and Geological Investigation and Research Project for the Year 95 (2006). Study on Stable Hydrogen and Oxygen Isotopes in Groundwater (3/3). Ministry of Economic Affairs, Taipei, Taiwan.
[22] Chang, Y.-L. (2015). Estimating SGD flux in the Pingtung Plain coastal area using Radon and Radium isotopes [Master Degree, National Taiwan University, Taiwan]. https://hdl.handle.net/11296/c7se6s
[23] Chen, C.-T. A., Zhang, J., Peng, T.-R., Kandasamy, S., Wang, D., & Lin, Y.-J. (2018). Submarine groundwater discharge around Taiwan. Acta Oceanologica Sinica, 37(6), 18-22. https://doi.org/10.1007/s13131-018-1216-2
[24] Chen, Y. G., & Liu, T.-K. (1991). Radiocarbon Dates of River Terraces along the Lower Tahanchi, Northern Taiwan:Their Tectonic and Geomorphic Implications. v.34 n.4, 337-347. Retrieved 1991, from http://140.112.114.62/handle/246246/108460
[25] Chen, Z., Huan, G., & Ma, Y. (2006). Computational methods for multiphase flows in porous media. SIAM. https://doi.org/10.1137/1.9780898718942
[26] Chou, C.-B., Weng, M.-C., Huang, H.-P., Chang, Y.-C., Chang, H.-C., & Yeh, T.-Y. (2022). Monitoring the Spring 2021 Drought Event in Taiwan Using Multiple Satellite-Based Vegetation and Water Indices. Atmosphere, 13(9). https://doi.org/10.3390/atmos13091374
[27] Conroy, J. L., Thompson, D. M., Cobb, K. M., Noone, D., Rea, S., & Legrande, A. N. (2017). Spatiotemporal variability in the δ18O-salinity relationship of seawater across the tropical Pacific Ocean. Paleoceanography, 32(5), 484-497. https://doi.org/10.1002/2016PA003073
[28] Cooper, H. H., & Warren, M. A. (1945). The perennial yield of artesian water in the coastal area of Georgia and northeastern Florida. Economic Geology, 40(4), 263-282. https://doi.org/10.2113/gsecongeo.40.4.263
[29] Cooper Jr, H. H. (1959). A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. Journal of Geophysical Research (1896-1977), 64(4), 461-467. https://doi.org/10.1029/JZ064i004p00461
[30] Correa, R. E., Tait, D. R., Sanders, C. J., Conrad, S. R., Harrison, D., Tucker, J. P., Reading, M. J., & Santos, I. R. (2020). Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). Journal of Hydrology, 580, 124262. https://doi.org/10.1016/j.jhydrol.2019.124262
[31] Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., & Pigois, J. P. (2020). Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Scientific Reports, 10(1), 9866. https://doi.org/10.1038/s41598-020-66516-6
[32] Coulon, C., Pryet, A., Lemieux, J.-M., Yrro, B. J. F., Bouchedda, A., Gloaguen, E., Comte, J.-C., Dupuis, J. C., & Banton, O. (2021). A framework for parameter estimation using sharp-interface seawater intrusion models. Journal of Hydrology, 600, 126509. https://doi.org/10.1016/j.jhydrol.2021.126509
[33] Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702-1703. https://doi.org/10.1126/science.133.3465.1702
[34] Dang, M.-Q., Wang, S.-J., Fu, C.-C., & Truong, H.-D. (2024a). Coastal flowing artesian wells and submarine groundwater discharge driven by tidal variation at TaiCOAST site in Taoyuan, Taiwan. Journal of Hydrology: Regional Studies, 52, 101708. https://doi.org/10.1016/j.ejrh.2024.101708
[35] Dang, M. Q., Hsu, F. H., Su, C. C., Wang, S. J., Fu, C. C., & Lin, I. T. (2024b). Investigation of seasonal variations in submarine groundwater discharge using radium isotopes under drought conditions in northwestern coastal Taiwan. Journal of Hydrology, 132450. https://doi.org/10.1016/j.jhydrol.2024.132450
[36] Debnath, P., Das, K., Mukherjee, A., Ghosh, N. C., Rao, S., Kumar, S., Krishan, G., & Joshi, G. (2019). Seasonal-to-diurnal scale isotopic signatures of tidally-influenced submarine groundwater discharge to the Bay of Bengal: Control of hydrological cycle on tropical oceans. Journal of Hydrology, 571, 697-710. https://doi.org/10.1016/j.jhydrol.2019.01.077
[37] Dhal, L., & Swain, S. (2022). Chapter 14 - Understanding and modeling the process of seawater intrusion: a review. In P. K. Gupta, B. Yadav, & S. K. Himanshu (Eds.), Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 269-290). Elsevier. https://doi.org/10.1016/B978-0-12-823830-1.00009-2
[38] Dibaj, M., Javadi, A. A., Akrami, M., Ke, K.-Y., Farmani, R., Tan, Y.-C., & Chen, A. S. (2020). Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeology Journal, 28(6), 2085-2103. https://doi.org/10.1007/s10040-020-02172-4
[39] Diego-Feliu, M., Rodellas, V., Alorda-Kleinglass, A., Tamborski, J., van Beek, P., Heins, L., Bruach, J. M., Arnold, R., & Garcia-Orellana, J. (2020). Guidelines and Limits for the Quantification of Ra Isotopes and Related Radionuclides With the Radium Delayed Coincidence Counter (RaDeCC). Journal of Geophysical Research: Oceans, 125(4), e2019JC015544. https://doi.org/10.1029/2019JC015544
[40] Diego-Feliu, M., Rodellas, V., Saaltink, M. W., Alorda-Kleinglass, A., Goyetche, T., Martinez-Perez, L., Folch, A., & Garcia-Orellana, J. (2021). New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies. Journal of Hydrology, 596, 126043. https://doi.org/10.1016/j.jhydrol.2021.126043
[41] Dimova, N. T., Burnett, W. C., & Speer, K. (2011). A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida. Continental Shelf Research, 31(6), 731-738. https://doi.org/10.1016/j.csr.2011.01.010
[42] Dulaiova, H., & Burnett, W. C. (2008). Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Marine Chemistry, 109(3), 395-408. https://doi.org/10.1016/j.marchem.2007.09.001
[43] Dulaiova, H., Camilli, R., Henderson, P. B., & Charette, M. A. (2010). Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. Journal of Environmental Radioactivity, 101(7), 553-563. https://doi.org/10.1016/j.jenvrad.2009.12.004
[44] Duong, Q. T. (2020). Numerical modeling of fresh-seawater interaction induced by tidal variation, a case study at NCU TaiCOAST site in Taoyuan, Taiwan [Master Degree, National Cental University, Taiwan]. http://ir.lib.ncu.edu.tw/handle/987654321/85117
[45] Elsdon, T. S., De Bruin, M. B. N. A., Diepen, N. J., & Gillanders, B. M. (2009). Extensive drought negates human influence on nutrients and water quality in estuaries. Science of The Total Environment, 407(8), 3033-3043. https://doi.org/10.1016/j.scitotenv.2009.01.012
[46] Fang, Y., Qian, J., Zheng, T., Wang, H., Zheng, X., & Walther, M. (2023). Submarine groundwater discharge in response to the construction of subsurface physical barriers in coastal aquifers. Journal of Hydrology, 617, 129010. https://doi.org/10.1016/j.jhydrol.2022.129010
[47] Fang, Y., Zheng, T., Wang, H., Zheng, X., & Walther, M. (2022). Influence of dynamically stable-unstable flow on seawater intrusion and submarine groundwater discharge over tidal and seasonal cycles. Journal of Geophysical Research: Oceans, 127(4), e2021JC018209. https://doi.org/10.1029/2021JC018209
[48] Fang, Y., Zheng, T., Zheng, X., Yang, H., Wang, H., & Walther, M. (2021). Influence of Tide-Induced Unstable Flow on Seawater Intrusion and Submarine Groundwater Discharge. Water Resources Research, 57(4), e2020WR029038. https://doi.org/10.1029/2020WR029038
[49] Ferrarin, C., Rapaglia, J., Zaggia, L., Umgiesser, G., & Zuppi, G. M. (2008). Coincident application of a mass balance of radium and a hydrodynamic model for the seasonal quantification of groundwater flux into the Venice Lagoon, Italy. Marine Chemistry, 112(3), 179-188. https://doi.org/10.1016/j.marchem.2008.08.008
[50] Frings, R. M., Schuttrumpf, H., & Vollmer, S. (2011). Verification of porosity predictors for fluvial sand?gravel deposits. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009690
[51] Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall, Inc, Englewood Cliffs, N. J. .
[52] Fujita, K., Shoji, J., Sugimoto, R., Nakajima, T., Honda, H., Takeuchi, M., Tominaga, O., & Taniguchi, M. (2019). Increase in Fish Production Through Bottom-Up Trophic Linkage in Coastal Waters Induced by Nutrients Supplied via Submarine Groundwater [Original Research]. Frontiers in Environmental Science, 7. https://www.frontiersin.org/articles/10.3389/fenvs.2019.00082
[53] Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek, P., Weinstein, Y., Charette, M., Alorda-Kleinglass, A., Michael, H. A., Stieglitz, T., & Scholten, J. (2021). Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220, 103681. https://doi.org/10.1016/j.earscirev.2021.103681
[54] Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., & Dulaiova, H. (2008). Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry, 109(3), 198-219. https://doi.org/10.1016/j.marchem.2007.11.006
[55] Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., Rodellas, V., Mejias, M., Ballesteros, B., & Dominguez, J. A. (2010). Groundwater and nutrient discharge through karstic coastal springs (<i>Castello</i>, Spain). Biogeosciences, 7(9), 2625-2638. https://doi.org/10.5194/bg-7-2625-2010
[56] George, M. E., Babu, D. S. S., Akhil, T., & Rafeeque, M. K. (2018). Investigation on Submarine Groundwater Discharge at Kozhikkode Coastal Aquifer, SW Western Ghats. Journal of the Geological Society of India, 92(5), 626-633. https://doi.org/10.1007/s12594-018-1077-5
[57] Giffin, C., Kaufman, A., & Broecker, W. (1963). Delayed coincidence counter for the assay of actinon and thoron. Journal of Geophysical Research (1896-1977), 68(6), 1749-1757. https://doi.org/10.1029/JZ068i006p01749
[58] Gilli, E. (2015). Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply. Environmental Earth Sciences, 74(1), 101-113. https://doi.org/10.1007/s12665-015-4042-2
[59] Glover, R. E. (1959). The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research (1896-1977), 64(4), 457-459. https://doi.org/10.1029/JZ064i004p00457
[60] Gonneea, M. E., Morris, P. J., Dulaiova, H., & Charette, M. A. (2008). New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109(3), 250-267. https://doi.org/10.1016/j.marchem.2007.12.002
[61] Green, T. R. (2016). Linking climate change and groundwater. Integrated groundwater management: Concepts, approaches and challenges, 97-141. https://doi.org/10.1007/978-3-319-23576-9_5
[62] Gu, X., Xue, M., Ye, C., Jiao, Y., Han, Y., Wang, W., ... & Liu, B. (2024). Evaluating heterogeneous lacustrine groundwater discharge of Hulun Lake using radium isotopes in Inner Mongolia, China. Journal of Hydrology: Regional Studies, 51, 101650. https://doi.org/10.1016/j.ejrh.2023.101650
[63] Guo, X., Xu, B., Burnett, W. C., Wei, Q., Nan, H., Zhao, S., Charette, M. A., Lian, E., Chen, G., & Yu, Z. (2020). Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary? Science of The Total Environment, 719, 137450. https://doi.org/10.1016/j.scitotenv.2020.137450
[64] Haag, J., Dulai, H., & Burt, W. (2023). The Role of Submarine Groundwater Discharge to the Input of Macronutrients Within a Macrotidal Subpolar Estuary. Estuaries and Coasts, 46(7), 1740-1755. https://doi.org/10.1007/s12237-023-01231-9
[65] Haitjema, H. M., & Mitchell-Bruker, S. (2005). Are Water Tables a Subdued Replica of the Topography? Groundwater, 43(6), 781-786. https://doi.org/10.1111/j.1745-6584.2005.00090.x
[66] Hamlat, A., & Guidoum, A. (2018). Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Applied Water Science, 8(8), 220. https://doi.org/10.1007/s13201-018-0863-y
[67] Hancock, G. J. (1993). The effect of salinity on the concentrations of radium and thorium in sediments. Master′s Thesis, Australian National University, Canberra, Australia https://doi.org/10.25911/5d74e36c30421
[68] Hata, M., Sugimoto, R., Hori, M., Tomiyama, T., & Shoji, J. (2016). Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan. Journal of Sea Research, 111, 47-53. https://doi.org/10.1016/j.seares.2016.01.009
[69] Heard, J., Tung, W.-C., Pei, Y.-D., Lin, T.-H., Lin, C.-H., Akamatsu, T., & Wen, C. K. C. (2021). Coastal development threatens Datan area supporting greatest fish diversity at Taoyuan Algal Reef, northwestern Taiwan. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(3), 590-604. https://doi.org/10.1002/aqc.3477
[70] Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, in" Seawater in Coastal Aquifers". US Geological Survey, Water Supply Paper, 1613, C70-C80.
[71] Hermides, D., Zaxariadis, D., & Stamatis, G. (2020). Hydrochemical characteristics of the Oropos coastal aquifers, Attica, Greece. Bulletin of the Geological Society of Greece, 56(1), 39-55. https://doi.org/10.12681/bgsg.20939
[72] Herzberg, A. (1901). Die wasserversorgung einiger Nordseebader. J. Gasbeleucht. Wasserversorg., 44, 815-819.
[73] Hou, Y., Yang, J., Russoniello, C. J., Zheng, T., Wu, M.-l., & Yu, X. (2022). Impacts of coastal shirmp ponds on saltwater intrusion and submarine groundwater discharge. Water Resources Research, 58(7), e2021WR031866. https://doi.org/10.1029/2021WR031866
[74] Hsieh, Y., Shiao, J.-C., Lin, S.-w., & Iizuka, Y. (2019). Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: An example of a euryhaline fish Lateolabrax japonicus. Rapid Communications in Mass Spectrometry, 33(16), 1344-1354. https://doi.org/10.1002/rcm.8476
[75] Hsu, F.-H. (2018). Submarine groundwater discharge along the coast of the Taiwan Strait indicated by source and sink transport of radium. [Doctoral Dissertation, National Taiwan University, Taiwan]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69859
[76] Hsu, F.-H., Su, C.-C., Wang, P.-L., & Lin, I.-T. (2020). Temporal Variations of Submarine Groundwater Discharge into a Tide-Dominated Coastal Wetland (Gaomei Wetland, Western Taiwan) Indicated by Radon and Radium Isotopes. Water, 12(6). https://doi.org/10.3390/w12061806
[77] Huang, C.-K. (2015). Using radon and radium isotopes to estimate submarine groundawter discharge flux in Yilan bay [Master Degree, National Taiwan University, Taiwan]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53014
[78] Huang, K.-F., You, C.-F., Chung, C.-H., & Lin, I.-T. (2011). Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochemistry, Geophysics, Geosystems, 12(5). https://doi.org/10.1029/2010GC003372
[79] Huang, P.-S., & Chiu, Y.-C. (2018). A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water, 10(3). https://doi.org/10.3390/w10030251
[80] Huang, S.-L., Lee, Y.-C., Budd, W. W., & Yang, M.-C. (2012). Analysis of Changes in Farm Pond Network Connectivity in the Peri-Urban Landscape of the Taoyuan Area, Taiwan. Environmental Management, 49(4), 915-928. https://doi.org/10.1007/s00267-012-9824-7
[81] Hwang, D. W., Lee, I. S., Choi, M., & Kim, T. H. (2016). Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222Rn-Si mass balance model. Marine Pollution Bulletin, 110(1), 119-126. https://doi.org/10.1016/j.marpolbul.2016.06.073
[82] Ibanhez, J. S. P., Alvarez-Salgado, X. A., Nieto-Cid, M., & Rocha, C. (2021). Fresh and saline submarine groundwater discharge in a large coastal inlet affected by seasonal upwelling. Limnology and Oceanography, 66(6), 2141-2158. https://doi.org/10.1002/lno.11733
[83] Ji, Z., Hu, D., Weng, H., Zhang, F., & Han, Z. (2012). Temporal and spatial variations of 226Ra in coastal sea and the estimation of submarine groundwater discharge (SGD). Geochimica, 42(1), 15-22.
[84] Juan, Y.-K., Chen, Y., & Lin, J.-M. (2016). Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan. Water, 8(11). https://doi.org/10.3390/w8110546
[85] Kao, R.-C., Zavialov, P. O., & Ding, C.-F. (2013). Investigation and assessment of submarine groundwater discharge of Ping-Tung nearshore area in southwestern Taiwan. Irrigation and Drainage, 62(S1), 10-17. https://doi.org/10.1002/ird.1789
[86] Kacimov, A. R., & Obnosov, Y. V. (2016). Size and shape of steady seawater intrusion and sharp-interface wedge: the polubarinova-kochina analytical solution to the dam problem revisited. Journal of Hydrologic Engineering, 21(8), 06016005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001385
[87] Kazakis, N., Spiliotis, M., Voudouris, K., Pliakas, F.-K., & Papadopoulos, B. (2018). A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Science of The Total Environment, 621, 524-534. https://doi.org/10.1016/j.scitotenv.2017.11.235
[88] Koohbor, B., Fahs, M., Ataie-Ashtiani, B., Belfort, B., Simmons, C. T., & Younes, A. (2019). Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters. Journal of Hydrology, 571, 159-177. https://doi.org/10.1016/j.jhydrol.2019.01.052
[89] Kim, G., Lee, K.-K., Park, K.-S., Hwang, D.-W., & Yang, H.-S. (2003). Large submarine groundwater discharge (SGD) from a volcanic island. Geophysical Research Letters, 30(21). https://doi.org/10.1029/2003GL018378
[90] Kiran Kumar, P., Singh, A., & Ramesh, R. (2018). Controls on δ18O, δD and δ18O-salinity relationship in the northern Indian Ocean. Marine Chemistry, 207, 55-62. https://doi.org/10.1016/j.marchem.2018.10.010
[91] Knee, K. L., Garcia-Solsona, E., Garcia-Orellana, J., Boehm, A. B., & Paytan, A. (2011). Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis. Limnology and Oceanography: Methods, 9(9), 380-395. https://doi.org/10.4319/lom.2011.9.380
[92] Kohout, F. A. (1966). Submarine springs : A neglected phenomenon of coastal hydrology. Hydrology, 26, 391-413. https://cir.nii.ac.jp/crid/1570009750197475968
[93] Koussis, A. D., Mazi, K., & Destouni, G. (2012). Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge. Journal of Hydrology, 416-417, 1-11. https://doi.org/10.1016/j.jhydrol.2011.11.012
[94] Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010678
[95] Kumar, A., Rout, S., Pulhani, V., & Kumar, A. V. (2020). A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades. Journal of Radioanalytical and Nuclear Chemistry, 323(1), 13-26. https://doi.org/10.1007/s10967-019-06930-x
[96] Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Cho, H.-M., DeVries, T., Sarmiento, J. L., Charette, M. A., & Cho, Y.-K. (2014). Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23), 8438-8444. https://doi.org/10.1002/2014GL061574
[97] Lambert, M. J., & Burnett, W. C. (2003). Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66(1), 55-73. https://doi.org/10.1023/B:BIOG.0000006057.63478.fa
[98] Li, Y., Zhang, B., Shi, L., & Ye, Y. (2019). Dynamic variation characteristics of seawater intrusion in underground water-sealed oil storage cavern under island tidal environment. Water, 11(1). https://doi.org/10.3390/w11010130
[99] Lecher, A. L., & Mackey, K. R. M. (2018). Synthesizing the Effects of Submarine Groundwater Discharge on Marine Biota. Hydrology, 5(4). https://doi.org/10.3390/hydrology5040060
[100] Li, Y.-H., & Chan, L.-H. (1979). Desorption of Ba and226Ra from river-borne sediments in the Hudson estuary. Earth and Planetary Science Letters, 43(3), 343-350. https://doi.org/10.1016/0012-821X(79)90089-X
[101] Li, Y.-H., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5), 703-714. https://doi.org/10.1016/0016-7037(74)90145-8
[102] Lin, I.-T., Wang, C.-H., Lin, S., & Chen, Y.-G. (2011). Groundwater–seawater interactions off the coast of southern Taiwan: Evidence from environmental isotopes. Journal of Asian Earth Sciences, 41(3), 250-262. https://doi.org/10.1016/j.jseaes.2011.03.001
[103] Lin, I.-T., Wang, C.-H., You, C.-F., Lin, S., Huang, K.-F., & Chen, Y.-G. (2010). Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Marine Chemistry, 122(1), 51-58. https://doi.org/10.1016/j.marchem.2010.08.007
[104] Lin, Y.-S., Lin, Y.-W., Wang, Y., Chen, Y.-G., Hsu, M.-L., Chiang, S.-H., & Chen, Z.-S. (2007). Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan–Hukou Tableland, Northwestern Taiwan. Geomorphology, 90(1), 36-54. https://doi.org/10.1016/j.geomorph.2007.01.013
[105] Lino, Y., Udayashankar, H. N., Suresh Babu, D. S., Ramasamy, M., & Balakrishna, K. (2023). Large submarine groundwater discharges to the Arabian Sea from tropical southwestern Indian Coast: Measurements from seepage meters deployed during the low tide. Journal of Hydrology, 620, 129394. https://doi.org/10.1016/j.jhydrol.2023.129394
[106] Liou, Y.-A., Wang, T.-S., & Chan, H.-P. (2013). Impacts of Pond Change on the Regional Sustainability of Water Resources in Taoyuan, Taiwan. Advances in Meteorology, 2013, 243456. https://doi.org/10.1155/2013/243456
[107] Liu, Y., Jiao, J. J., Mao, R., Luo, X., Liang, W., & Robinson, C. E. (2019). Spatial Characteristics Reveal the Reactive Transport of Radium Isotopes (224Ra, 223Ra, and 228Ra) in an Intertidal Aquifer. Water Resources Research, 55(12), 10282-10302. https://doi.org/10.1029/2019WR024849
[108] Luek, J. L., & Beck, A. J. (2014). Radium budget of the York River estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member. Marine Chemistry, 165, 55-65. https://doi.org/10.1016/j.marchem.2014.08.001
[109] Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications, 11(1), 1260. https://doi.org/10.1038/s41467-020-15064-8
[110] Matsuura, T., Tebakari, T., Oda, A., & Ueda, A. (2021). Flow characteristics of artesian groundwater in coastal area of Kurobe River basin, Toyama Prefecture, by long-term and spatial observation of water temperature and electric conductivity. Groundwater for Sustainable Development, 13, 100555. https://doi.org/10.1016/j.gsd.2021.100555
[111] Martinez-Moreno, F. J., Monteiro-Santos, F. A., Bernardo, I., Farzamian, M., Nascimento, C., Fernandes, J., Casal, B., & Ribeiro, J. A. (2017). Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data. Journal of Hydrology, 552, 609-619. https://doi.org/10.1016/j.jhydrol.2017.07.026
[112] Mastrocicco, M., Colombani, N., & Antonellini, M. (2012). Freshwater–seawater mixing experiments in sand columns. Journal of Hydrology, 448-449, 112-118. https://doi.org/10.1016/j.jhydrol.2012.04.046
[113] McCoy, C. A., & Corbett, D. R. (2009). Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications. Journal of Environmental Management, 90(1), 644-651. https://doi.org/10.1016/j.jenvman.2008.03.002
[114] Meinzer, O. E. (1923). The occurrence of ground water in the United States, with a discussion of principles [Report](489). (Water Supply Paper, Issue. U. S. G. P. Office. https://pubs.usgs.gov/publication/wsp489
[115] Men, W., Jiang, Y., Liu, G., Wang, F., & Zhang, Y. (2016). Study of water mixing in the coastal waters of the western Taiwan Strait based on radium isotopes. Journal of Environmental Radioactivity, 152, 16-22. https://doi.org/10.1016/j.jenvrad.2015.11.003
[116] Meyer, F. W. (1971). Saline artesian water as a supplement. Journal AWWA, 63(2), 65-71. https://doi.org/10.1002/j.1551-8833.1971.tb04029.x
[117] Michael, H. A., Mulligan, A. E., & Harvey, C. F. (2005). Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054), 1145-1148. https://doi.org/10.1038/nature03935
[118] Milanovic, P. (2004). Water resources engineering in karst. CRC press. https://doi.org/10.1201/9780203499443
[119] Moore, W. S. (1976). Sampling 228Ra in the deep ocean. Deep Sea Research and Oceanographic Abstracts, 23(7), 647-651. https://doi.org/10.1016/0011-7471(76)90007-3
[120] Moore, W. S. (1984). Radium isotope measurements using germanium detectors. Nuclear Instruments and Methods in Physics Research, 223(2), 407-411. https://doi.org/10.1016/0167-5087(84)90683-5
[121] Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575), 612-614. https://doi.org/10.1038/380612a0
[122] Moore, W. S. (2000a). Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research: Oceans, 105(C9), 22117-22122. https://doi.org/10.1029/1999JC000289
[123] Moore, W. S. (2000b). Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 20(15), 1993-2007. https://doi.org/10.1016/S0278-4343(00)00054-6
[124] Moore, W. S. (2006). Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 26(7), 852-861. https://doi.org/10.1016/j.csr.2005.12.004
[125] Moore, W. S. (2008). Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 109(3), 188-197. https://doi.org/10.1016/j.marchem.2007.06.015
[126] Moore, W. S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science, 2(Volume 2, 2010), 59-88. https://doi.org/10.1146/annurev-marine-120308-081019
[127] Moore, W. S., & Arnold, R. (1996). Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1), 1321-1329. https://doi.org/10.1029/95JC03139
[128] Moore, W. S., Blanton, J. O., & Joye, S. B. (2006). Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9). https://doi.org/10.1029/2005JC003041
[129] Moore, W. S., & Cai, P. (2013). Calibration of RaDeCC systems for 223Ra measurements. Marine Chemistry, 156, 130-137. https://doi.org/10.1016/j.marchem.2013.03.002
[130] Momejian, N., Abou Najm, M., Alameddine, I., & El-Fadel, M. (2019a). Can groundwater vulnerability models assess seawater intrusion? Environmental Impact Assessment Review, 75, 13-26. https://doi.org/10.1016/j.eiar.2018.10.003
[131] Momejian, N., Abou Najm, M., Alameddine, I., & El-Fadel, M. (2019b). Groundwater vulnerability modeling to assess seawater intrusion: a methodological comparison with geospatial interpolation. Water Resources Management, 33(3), 1039-1052. https://doi.org/10.1007/s11269-018-2165-4
[132] Moosdorf, N., & Oehler, T. (2017). Societal use of fresh submarine groundwater discharge: An overlooked water resource. Earth-Science Reviews, 171, 338-348. https://doi.org/10.1016/j.earscirev.2017.06.006
[133] Murgulet, D., Lopez, C. V., & Douglas, A. R. (2022). Radioactive and stable isotopes reveal variations in nearshore submarine groundwater discharge composition and magnitude across low inflow northwestern Gulf of Mexico estuaries. Science of the Total Environment, 823, 153814. https://doi.org/10.1016/j.scitotenv.2022.153814
[134] Mulligan, A. E., & Charette, M. A. (2006). Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. Journal of Hydrology, 327(3-4), 411-425. https://doi.org/10.1016/j.jhydrol.2005.11.056
[135] Nakajima, T., Kuragano, M., Yamada, M., & Sugimoto, R. (2024). Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway. Science of The Total Environment, 908, 168068. https://doi.org/10.1016/j.scitotenv.2023.168068
[136] Nakajima, T., Sugimoto, R., Tominaga, O., Takeuchi, M., Honda, H., Shoji, J., & Taniguchi, M. (2018). Fresh and Recirculated Submarine Groundwater Discharge Evaluated by Geochemical Tracers and a Seepage Meter at Two Sites in the Seto Inland Sea, Japan. Hydrology, 5(4). https://doi.org/10.3390/hydrology5040061
[137] Negrel, P., Millot, R., Guerrot, C., Petelet-Giraud, E., Brenot, A., & Malcuit, E. (2012). Heterogeneities and interconnections in groundwaters: Coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France). Chemical Geology, 296-297, 83-95. https://doi.org/10.1016/j.chemgeo.2011.12.022
[138] Nicholas, C. W. N., Li, C., Wang, C., Guo, Y., Duan, Z., Su, N., & Yang, S. (2023). Bedrock (234U/238U) disequilibrium and its impact on inferring sediment comminution age in Taiwan Island. Applied Geochemistry, 149, 105550. https://doi.org/10.1016/j.apgeochem.2022.105550
[139] Niencheski, L. F. H., Windom, H. L., Moore, W. S., & Jahnke, R. A. (2007). Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Marine Chemistry, 106(3), 546-561. https://doi.org/10.1016/j.marchem.2007.06.004
[140] Panthi, J., Pradhanang, S. M., Nolte, A., & Boving, T. B. (2022). Saltwater intrusion into coastal aquifers in the contiguous United States — A systematic review of investigation approaches and monitoring networks. Science of The Total Environment, 836, 155641. https://doi.org/10.1016/j.scitotenv.2022.155641
[141] Peng, K., Heiss, J. W., Xie, X., Yan, L., Deng, Y., Gan, Y., Li, Q., & Zhang, Y. (2023). Groundwater discharge and saltwater-freshwater mixing in a mangrove wetland over tidal cycles: A field and modeling study. Journal of Hydrology, 620, 129472. https://doi.org/10.1016/j.jhydrol.2023.129472
[142] Peng, T.-R., Chen, C.-T. A., Wang, C.-H., Zhang, J., & Lin, Y.-J. (2008). Assessment of terrestrial factors controlling the submarine groundwater discharge in water shortage and highly deformed Island of Taiwan, Western Pacific Ocean. Journal of Oceanography, 64(2), 323-337. https://doi.org/10.1007/s10872-008-0026-0
[143] Peng, T.-R., Huang, C.-C., Wang, C.-H., Liu, T.-K., Lu, W.-C., & Chen, K.-Y. (2012). Using oxygen, hydrogen, and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. Journal of Hydrology, 450-451, 105-116. https://doi.org/10.1016/j.jhydrol.2012.05.021
[144] Pereira, L., Feddes, R., Gilley, J., & Lesaffre, B. (2013). Sustainability of irrigated agriculture (Vol. 312). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-94-015-8700-6
[145] Porcelli, D. (2008). Chapter 4 Investigating Groundwater Processes Using U- and Th-Series Nuclides. In S. Krishnaswami & J. K. Cochran (Eds.), Radioactivity in the Environment (Vol. 13, pp. 105-153). Elsevier. https://doi.org/10.1016/S1569-4860(07)00004-6
[146] Post, V. E., Bosserelle, A. L., Galvis, S. C., Sinclair, P. J., & Werner, A. D. (2018). On the resilience of small-island freshwater lenses: Evidence of the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. Journal of Hydrology, 564, 133-148. https://doi.org/10.1016/j.jhydrol.2018.06.015
[147] Povinec, P. P., De Oliveira, J., Braga, E. D. S., Comanducci, J. F., Gastaud, J., Groening, M., ... & Top, Z. (2008). Isotopic, trace element and nutrient characterization of coastal waters from Ubatuba inner shelf area, south-eastern Brazil. Estuarine, Coastal and Shelf Science, 76(3), 522-542. https://doi.org/10.1016/j.ecss.2007.07.041
[148] Prakash, R., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., Vinnarasi, F., Ponnumani, G., Chidambaram, S., & Anandhan, P. (2018). Radon isotope assessment of submarine groundwater discharge (SGD) in Coleroon River Estuary, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 25-36. https://doi.org/10.1007/s10967-018-5877-2
[149] Rahaman, W., & Singh, S. K. (2012). Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge. Geochimica et Cosmochimica Acta, 85, 275-288. https://doi.org/10.1016/j.gca.2012.02.025
[150] Reich, C. D. (2010). Investigation of submarine groundwater discharge along the tidal reach of the Caloosahatchee River, southwest Florida [Report](2009-1273). (Open-File Report, Issue. U. S. G. Survey. https://pubs.usgs.gov/publication/ofr20091273
[151] Robinson, C., Li, L., & Prommer, H. (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005679
[152] Rodellas, V., Garcia-Orellana, J., Masque, P., & Font-Munoz, J. S. (2015). The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Marine Chemistry, 171, 107-117. https://doi.org/10.1016/j.marchem.2015.02.010
[153] Rogers, G. D., & Moore, D. R. (1997). Drilling, Sampling, and Construction of Monitoring Wells Under Flowing Artesian Conditions. Environmental & Engineering Geoscience, III(3), 369-373. https://doi.org/10.2113/gseegeosci.III.3.369
[154] Sheibani, S., Ataie-Ashtiani, B., Safaie, A., & Simmons, C. T. (2020). Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran. Journal of Hydrology, 588, 125110. https://doi.org/10.1016/j.jhydrol.2020.125110
[155] Shafabakhsh, P., Fahs, M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Unstable density-driven flow in fractured porous media: the fractured elder problem. Fluids, 4(3). https://doi.org/10.3390/fluids4030168
[156] Santos, I. R., Burnett, W. C., Chanton, J., Mwashote, B., Suryaputra, I. G. N. A., & Dittmar, T. (2008a). Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnology and Oceanography, 53(2), 705-718. https://doi.org/10.4319/lo.2008.53.2.0705
[157] Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., Tamborski, J., Cho, H.-M., Dimova, N., Sugimoto, R., Bonaglia, S., Li, H., Hajati, M.-C., & Li, L. (2021). Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5), 307-323. https://doi.org/10.1038/s43017-021-00152-0
[158] Santos, I. R., Niencheski, F., Burnett, W., Peterson, R., Chanton, J., Andrade, C. F. F., Milani, I. B., Schmidt, A., & Knoeller, K. (2008b). Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. Journal of Hydrology, 353(3), 275-293. https://doi.org/10.1016/j.jhydrol.2008.02.010
[159] Scholten, J. C., Pham, M. K., Blinova, O., Charette, M. A., Dulaiova, H., & Eriksson, M. (2010). Preparation of Mn-fiber standards for the efficiency calibration of the delayed coincidence counting system (RaDeCC). Marine Chemistry, 121(1), 206-214. https://doi.org/10.1016/j.marchem.2010.04.009
[160] Schiavo, M. A., Hauser, S., & Povinec, P. P. (2009). Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. Journal of Hydrology, 364(1-2), 40-49. https://doi.org/10.1016/j.jhydrol.2008.10.005
[161] Selvam, S., Muthukumar, P., Sajeev, S., Venkatramanan, S., Chung, S. Y., Brindha, K., Babu, D. S. S., & Murugan, R. (2021). Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geoscience Frontiers, 12(1), 29-38. https://doi.org/10.1016/j.gsf.2020.06.012
[162] Shaw, R. D., & Prepas, E. E. (1990). Groundwater-lake interactions: I. Accuracy of seepage meter estimates of lake seepage. Journal of Hydrology, 119(1), 105-120. https://doi.org/10.1016/0022-1694(90)90037-X
[163] Sholkovitz, E., Herbold, C., & Charette, M. (2003). An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnology and Oceanography: Methods, 1(1), 16-28. https://doi.org/10.4319/lom.2003.1.16
[164] Stieglitz, T., Rapaglia, J., & Bokuniewicz, H. (2008). Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements. Journal of Geophysical Research: Oceans, 113(C8). https://doi.org/10.1029/2007JC004499
[165] Stringfield, V. T., Warren, M. A., & Cooper, H. H. (1941). Artesian water in the coastal area of Georgia and northeastern Florida. Economic Geology, 36(7), 698-711. https://doi.org/10.2113/gsecongeo.36.7.698
[166] Su, W., Ma, Y., Wang, Q., Yan, Q., Lu, X., Ma, Z., Yi, L., Liu, X., Chen, F., Han, F., & Xu, Z. (2022). Effects of salinity and particle size on radium desorption from river sediments in the Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 241, 106771. https://doi.org/10.1016/j.jenvrad.2021.106771
[167] Sugimoto, R., Honda, H., Kobayashi, S., Takao, Y., Tahara, D., Tominaga, O., & Taniguchi, M. (2016). Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan). Estuaries and Coasts, 39(1), 13-26. https://doi.org/10.1007/s12237-015-9986-7
[168] Swarzenski, P. W., Reich, C., Kroeger, K. D., & Baskaran, M. (2007). Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Marine Chemistry, 104(1), 69-84. https://doi.org/10.1016/j.marchem.2006.08.001
[169] Taniguchi, M. (1995). Change in Groundwater Seepage Rate into Lake Biwa. Japanese Journal of Limnology (Rikusuigaku Zasshi), 56(4), 261-267. https://doi.org/10.3739/rikusui.56.261
[170] Taniguchi, M. (2002). Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 29(12), 2-1-2-3. https://doi.org/10.1029/2002GL014987
[171] Taniguchi, M., Burnett, W. C., Dulaiova, H., Siringan, F., Foronda, J., Wattayakorn, G., Rungsupa, S., Kontar, E. A., & Ishitobi, T. (2008). Groundwater Discharge as an Important Land-Sea Pathway into Manila Bay, Philippines. Journal of Coastal Research(24 (10024)), 15-24. https://doi.org/10.2112/06-0636.1
[172] Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N., & Burnett, W. C. (2019). Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects [Review]. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00141
[173] Taniguchi, M., & Fukuo, Y. (1993). Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter. Groundwater, 31(4), 675-679. https://doi.org/10.1111/j.1745-6584.1993.tb00601.x
[174] Taniguchi, M., Ishitobi, T., Burnett, W. C., & Wattayakorn, G. (2007). Evaluating Ground Water–Sea Water Interactions via Resistivity and Seepage Meters. Groundwater, 45(6), 729-735. https://doi.org/10.1111/j.1745-6584.2007.00343.x
[175] Taniguchi, M., Nakayama, T., Tase, N., & Shimada, J. (2000). Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan. Hydrological Processes, 14(3), 539-556. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<539::AID-HYP953>3.0.CO;2-L
[176] Tebakari, T., Mizoguchi, T., Motoyoshi, Y., & Zhang, J. (2013). Discharge and water quality characteristics of flowing artesian wells in the Kurobe river alluvial fan, Japan. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 69(4), I_589-I_594. https://doi.org/10.2208/jscejhe.69.I_589
[177] Uen, T.-S., Chang, F.-J., Zhou, Y., & Tsai, W.-P. (2018). Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Science of The Total Environment, 633, 341-351. https://doi.org/10.1016/j.scitotenv.2018.03.172
[178] Utsunomiya, T., Hata, M., Sugimoto, R., Honda, H., Kobayashi, S., Miyata, Y., Yamada, M., Tominaga, O., Shoji, J., & Taniguchi, M. (2017). Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan. Journal of Hydrology: Regional Studies, 11, 139-146. https://doi.org/10.1016/j.ejrh.2015.11.012
[179] Voss, C. I., Simmons, C. T., & Robinson, N. I. (2010). Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box. Hydrogeology Journal, 18(1), 5-23. https://doi.org/10.1007/s10040-009-0556-6
[180] Wang, C.-H., Kuo, C.-H., Peng, T.-R., Chen, W.-F., Liu, T.-K., Chiang, C.-J., Liu, W.-C., & Hung, J.-J. (2001). Isotope characteristics of Taiwan groundwaters. Western Pacific Earth Sciences, 1(4), 415-428.
[181] Wang, Q., Li, H., Zhang, Y., Wang, X., Zhang, C., Xiao, K., & Qu, W. (2019). Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China. Science of The Total Environment, 695, 133873. https://doi.org/10.1016/j.scitotenv.2019.133873
[182] Wang, Q., Wang, X., Xiao, K., Zhang, Y., Luo, M., Zheng, C., & Li, H. (2021a). Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes. Geoscience Frontiers, 12(5), 101223. https://doi.org/10.1016/j.gsf.2021.101223
[183] Wang, Q., Zhang, X., Wang, X., Xiao, K., Zhang, Y., Wang, L., Kuang, X., & Li, H. (2021b). Quantification of the water age and submarine groundwater discharge in a typical semi-enclosed bay using stable oxygen (18O) and radioactive radium (228Ra) isotopes. Journal of Hydrology, 603, 127088. https://doi.org/10.1016/j.jhydrol.2021.127088
[184] Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y. F., & Tseng, H.-W. (2021). Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water, 13(9). https://doi.org/10.3390/w13091153
[185] Wang, X., Zhang, F., Du, J., Hong, G. H., & Chen, X. (2023). Anthropogenic As pollution mediated by submarine groundwater discharge in a marine ranch. Marine Pollution Bulletin, 196, 115681. https://doi.org/10.1016/j.marpolbul.2023.115681
[186] Wang, Y. H., Ger, T. H., Lou, J. R., & Chang Chien, C. T. (2022). Water-saving Strategies in the Face of Water Shortage Crisis: A Case Study of Science Museum in Taiwan. IOP Conference Series: Earth and Environmental Science, 987(1), 012014. https://doi.org/10.1088/1755-1315/987/1/012014
[187] Webster, I. T., Hancock, G. J., & Murray, A. S. (1995). Modelling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta, 59(12), 2469-2476. https://doi.org/10.1016/0016-7037(95)00141-7
[188] Welber, M., Le Coz, J., Laronne, J. B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A., & Salvaro, M. (2016). Field assessment of noncontact stream gauging using portable surface velocity radars (SVR). Water Resources Research, 52(2), 1108-1126. https://doi.org/10.1002/2015WR017906
[189] Werner, A. D. (2017). Correction factor to account for dispersion in sharp-interface models of terrestrial freshwater lenses and active seawater intrusion. Advances in Water Resources, 102, 45-52. https://doi.org/10.1016/j.advwatres.2017.02.001
[190] Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3-26. https://doi.org/10.1016/j.advwatres.2012.03.004
[191] Worts, G. F. (1965). A brief appraisal of ground-water conditions in the Coastal Artesian Basin of British Guiana, South America [Report](1663B). (Water Supply Paper, Issue. G. P. O. U.S. https://pubs.usgs.gov/publication/wsp1663B
[192] WRA. (Water Resources Agency 2021). Hydrological Year Book of Taiwan. Part II - River stage and discharge (Water Resources Agency, Ministry of Economic Affairs). https://gweb.wra.gov.tw/wrhygis/ebooks/hybbook.asp
[193] WRA. (Water Resources Agency 2023). Preliminary Potential Analysis of Submarine Groundwater Discharge in Taoyuan Coastal Area. Ministry of Economic Affairs, Taipei, Taiwan.
[194] Wu, H., Lu, C., Shen, C., & Ye, Y. (2023). Using a subsurface barrier to control seawater intrusion and enhance groundwater extraction in coastal aquifers: An analytical study. Journal of Hydrology, 621, 129537. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129537
[195] Xu, B.-C., Dimova, N. T., Zhao, L., Jiang, X.-Y., & Yu, Z.-G. (2013). Determination of water ages and flushing rates using short-lived radium isotopes in large estuarine system, the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science, 121-122, 61-68. https://doi.org/10.1016/j.ecss.2013.02.005
[196] Yi, L., Dong, N., Zhang, L., Xiao, G., Wang, H., & Jiang, X. (2019). Radium isotopes distribution and submarine groundwater discharge in the Bohai Sea. Groundwater for Sustainable Development, 9, 100242. https://doi.org/10.1016/j.gsd.2019.100242
[197] Zavialov, P. O., Kao, R. C., Kremenetskiy, V. V., Peresypkin, V. I., Ding, C. F., Hsu, J. T., Kopelevich, O. V., Korotenko, K. A., Wu, Y. S., & Chen, P. (2012). Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan. Continental Shelf Research, 34, 18-25. https://doi.org/10.1016/j.csr.2011.11.010
[198] Zhang, B., & Zhang, J. (2021). The hydrological connection between fresh submarine groundwater discharge and coastal groundwater: an isotopic and a decadal hydrochemistry approach in an alluvial fan, central Japan. Environmental Earth Sciences, 80(18), 618. https://doi.org/10.1007/s12665-021-09917-8
[199] Zhou, F., Wu, J., Chen, F., Chen, C., Zhu, Q., Lao, Q., Zhou, X., & Lu, X. (2022). Using Stable Isotopes (δ18O and δD) to Study the Dynamics of Upwelling and Other Oceanic Processes in Northwestern South China Sea. Journal of Geophysical Research: Oceans, 127(1), e2021JC017972. https://doi.org/10.1029/2021JC017972
[200] Zhou, Y., Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2019). Fresh Submarine Groundwater Discharge to the Near-Global Coast. Geophysical Research Letters, 46(11), 5855-5863. https://doi.org/10.1029/2019GL082749 |