博碩士論文 110323059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.135.218.109
姓名 王立元(Li-Yuan Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 侵入物於不同縱橫比圓柱顆粒振動床內運動現象之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 本研究使用類二維矩形容器為床體,以同體積但不同縱橫比(Aspect Ratio)的圓柱顆粒為背景顆粒,在改變振動頻率與無因次振動加速度下,透過實驗的方式來探討侵入物於振動顆粒床中的上升行為。圓柱顆粒分別以0.67、1.3、2.25、3.66與5.33的縱橫比來進行顆粒分離運動的實驗,藉由高速攝影機來進行影像拍攝,並以粒子影像測速技術((Particle Image Velocimetry, PIV)與MATLAB做影像處理與分析,由此探討侵入物的上升時間、各階段上升速度、背景顆粒堆積密度、背景粒子溫度與侵入物上升阻力等物理特性,以了解侵入物於不同縱橫比圓柱顆粒中分離行為與流動變化。
實驗結果顯示,振動頻率的增加會使侵入物上升時間增加,而圓柱顆粒的縱橫比越高,侵入物的上升時間也會越長。這是因為當圓柱顆粒的縱橫比大於1,動態堆積密度會隨著縱橫比增加而逐漸下降,動態堆積密度的降低會有更高的孔隙率,使侵入物可更容易與圓柱背景顆粒產生分離,因此高縱橫比會有較短的上升時間。而不同振動頻率在低振動加速度時,侵入物的上升速度隨高度升高而降低,這是受顆粒堆積密度隨時間而增加的影響,使背景顆粒在後期較難流動到侵入物下方而減少背景顆粒對侵入物的推升,造成侵入物上升速度減慢。以背景粒子溫度來看各階段流動狀態可發現,在隨振動時間增加的不同階段中,接近顆粒床底部的背景粒子溫度會因堆積效應而逐漸趨近於零。因此由實驗結果可知,圓柱顆粒於垂直振動床的運動,容易因形狀形成的堆積效應而影響顆粒床的流動性質。
摘要(英) This study employs a quasi-two-dimensional rectangular container as the bed, using cylindrical particles with the same volume but different aspect ratios (AR) as the background particles. Through experiments, the rising behavior of an intruder in a vibrated granular bed is investigated under varying vibration frequencies and dimensionless vibration accelerations. The experiments on granular segregation involve cylindrical particles with aspect ratios of 0.67, 1.3, 2.25, 3.66, and 5.33. High-speed cameras captured the particle motion, and Particle Image Velocimetry (PIV) with MATLAB was employed for image processing and analysis. The analysis focuses on the intruder′s rising time, rising velocity at different stage, granular temperature of the background particles, bulk density of the background particles and the rising resistance of the intruder, aiming to understand the segregation behavior and flow dynamics of the intruder among cylindrical particles with different aspect ratios.
Experimental results show that increasing frequency leads to longer rising times for the intruder, and the rising time increases with the AR of cylindrical particles. This is because, for AR > 1, the bulk density of the particles decreases, resulting in higher porosity, which facilitates separation between the intruder and the background particles. Thus, higher aspect ratios result in shorter rising times. At low vibration accelerations, the intruder′s rising velocity decreases with increasing height due to the increasing bulk density, which reduces the flow of background particles beneath the intruder in the later stages. Analyzing the background particle temperature near the bed′s bottom approaches zero over time due to packing effects. These findings demonstrate that the motion of cylindrical particles in a vertical vibrated bed is significantly influenced by shape-induced packing effects, which affect the flow properties of the granular bed.
關鍵字(中) ★ 顆粒流
★ 振動床
★ 侵入物
★ 圓柱顆粒
★ 巴西豆效應
關鍵字(英) ★ Granular
★ Vibrated bed
★ Intruder
★ Cylindrical particle
★ Brazil nut effect
論文目次 致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 x
第 一 章 簡介 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 顆粒體於振動床的運動現象 2
1.2.2 顆粒體的分離現象 4
1.2.3 不同形狀顆粒的運動行為 7
1.3 研究動機 9
第 二 章 實驗與研究方法 13
2.1 實驗設備 13
2.2 分析方法 16
2.2.1 實驗參數 16
2.2.1 侵入物抓取範圍 17
2.2.2 粒子影像測速法 17
2.2.3 對侵入物移動的追蹤 18
2.3 粒子溫度 18
2.4 侵入物的上升阻力 19
2.5 實驗步驟 20
第 三 章 結果與討論 30
3.1 侵入物於振動床內的上升行為 30
3.1.1 侵入物於不同背景顆粒中的上升時間 31
3.1.2 不同背景顆粒之動態堆積密度 32
3.1.3 侵入物於不同背景顆粒中的上升速度之變化 33
3.2 侵入物上升行為與背景粒子溫度之關係 34
3.2.1 侵入物在不同高度區段之背景粒子溫度 34
3.2.2 粒子溫度與上升速度之關係 35
3.3 不同背景顆粒對侵入物上升所受阻力的影響 36
第 四 章 結論 82
參考文獻 83
參考文獻 H.M. Jaeger and S.R. Nagel, "Physics of the granular state". Science, Vol. 255(5051): pp. 1523-1531, 1992.
[2] S. Hsiau and S. Pan, "Motion state transitions in a vibrated granular bed". Powder technology, Vol. 96(3): pp. 219-226, 1998.
[3] S.-S. Hsiau and C. Chen, "Granular convection cells in a vertical shaker". Powder Technology, Vol. 111(3): pp. 210-217, 2000.
[4] S. Yang and S. Hsiau, "Simulation study of the convection cells in a vibrated granular bed". Chemical engineering science, Vol. 55(18): pp. 3627-3637, 2000.
[5] F. Zhang, L. Wang, C. Liu, P. Wu, and S. Zhan, "Patterns of convective flow in a vertically vibrated granular bed". Physics Letters A, Vol. 378(18-19): pp. 1303-1308, 2014.
[6] C. Wassgren, C. Brennen, and M. Hunt, "Vertical vibration of a deep bed of granular material in a container". Vol., 1996.
[7] S.S. Hsiau, P.C. Wang, and C.H. Tai, "Convection cells and segregation in a vibrated granular bed". AIChE Journal, Vol. 48(7): pp. 1430-1438, 2002.
[8] C. Tai and S. Hsiau, "Dynamic behaviors of powders in a vibrating bed". Powder Technology, Vol. 139(3): pp. 221-232, 2004.
[9] A. Gotzendorfer, C.-H. Tai, C.A. Kruelle, I. Rehberg, and S.-S. Hsiau, "Fluidization of a vertically vibrated two-dimensional hard sphere packing: A granular meltdown". Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, Vol. 74(1): pp. 011304, 2006.
[10] L.-S. Lu and S.-S. Hsiau, "DEM simulation of particle mixing in a sheared granular flow". Particuology, Vol. 6(6): pp. 445-454, 2008.
[11] A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, "Why the Brazil nuts are on top: Size segregation of particulate matter by shaking". Physical review letters, Vol. 58(10): pp. 1038, 1987.
[12] S. Hsiau and H. Yu, "Segregation phenomena in a shaker". Powder Technology, Vol. 93(1): pp. 83-88, 1997.
[13] D.C. Hong, P.V. Quinn, and S. Luding, "Reverse Brazil nut problem: competition between percolation and condensation". Physical Review Letters, Vol. 86(15): pp. 3423, 2001.
[14] A.P. Breu, H.-M. Ensner, C.A. Kruelle, and I. Rehberg, "Reversing the Brazil-nut effect: competition between percolation and condensation". Physical review letters, Vol. 90(1): pp. 014302, 2003.
[15] J. Duran, T. Mazozi, E. Clement, and J. Rajchenbach, "Size segregation in a two-dimensional sandpile: Convection and arching effects". Physical Review E, Vol. 50(6): pp. 5138, 1994.
[16] J. Duran, J. Rajchenbach, and E. Clement, "Arching effect model for particle size segregation". Physical review letters, Vol. 70(16): pp. 2431, 1993.
[17] K. Liffman, K. Muniandy, M. Rhodes, D. Gutteridge, and G. Metcalfe, "A segregation mechanism in a vertically shaken bed". Granular Matter, Vol. 3: pp. 205-214, 2001.
[18] Y. Nahmad-Molinari, G. Canul-Chay, and J. Ruiz-Suarez, "Inertia in the Brazil nut problem". Physical Review E, Vol. 68(4): pp. 041301, 2003.
[19] D. Huerta and J. Ruiz-Suarez, "Vibration-induced granular segregation: a phenomenon driven by three mechanisms". Physical Review Letters, Vol. 92(11): pp. 114301, 2004.
[20] M.E. Mobius, X. Cheng, G.S. Karczmar, S.R. Nagel, and H.M. Jaeger, "Intruders in the dust: Air-driven granular size separation". Physical review letters, Vol. 93(19): pp. 198001, 2004.
[21] M.E. Mobius, X. Cheng, P. Eshuis, G.S. Karczmar, S.R. Nagel, and H.M. Jaeger, "Effect of air on granular size separation in a vibrated granular bed". Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, Vol. 72(1): pp. 011304, 2005.
[22] B. Chen, P. Wu, H. Xing, H. Liu, L. Li, and L. Wang, "Convection behavior of ellipsoidal particles in a quasi-two-dimensional bed under vertical vibration". Powder technology, Vol. 363: pp. 575-583, 2020.
[23] F.X. Villarruel, B.E. Lauderdale, D.M. Mueth, and H.M. Jaeger, "Compaction of rods: Relaxation and ordering in vibrated, anisotropic granular material". Physical Review E, Vol. 61(6): pp. 6914, 2000.
[24] Q. Qian, X. An, H. Zhao, K. Dong, and X. Yang, "Numerical investigations on random close packings of cylindrical particles with different aspect ratios". Powder Technology, Vol. 343: pp. 79-86, 2019.
[25] J. Qiao, K. Dong, and C. Duan, "DEM Study on the Segregation of a Non-spherical Intruder in a Vibrated Granular Bed". Processes, Vol. 9(3): pp. 448, 2021.
[26] D. Xiao, X. Dong, S. Hu, and X. Liu, "Coupling particle image velocimetry and digital image analysis to characterize cluster dynamics in a fast fluidized bed". Powder Technology, Vol. 434: pp. 119267, 2024.
[27] X. An and H. Chai, "Packing densification of binary cylindrical particle mixtures under 3D mechanical vibrations". Advanced Powder Technology, Vol. 27(6): pp. 2489-2495, 2016.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2025-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明