博碩士論文 111323081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.128.173.223
姓名 王維文(WEI-WUN WANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 預混甲烷混氫低碳燃料之多孔性介質燃燒器性能量測及其人工智慧輔助溫度預測
(Performance Measurement of A Porous Radiant Burner using Low-Carbon Premixed Methane-Hydrogen/Air Mixtures and Its Artificial Intelligence Assisted Temperature Prediction)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 本論文使用貧油預混甲烷/空氣燃氣,於固定當量比= 0.65條件下,加入不同體積百分比的氫氣(XH2 = 10%、30%、50%)作為燃料,量測一低NOx多孔性介質輻射燃燒器的表面溫度和其加氫後[NOx]和[CO]的變化。此Ni-Al多孔介質燃燒器是經高溫自我傳遞合成法所製作,具有穹頂中空圓柱形結構,其穹頂中心高度為150 mm、外徑66 mm、多孔介質厚度為9 mm、孔隙率約為0.6。實驗使用三種不同的燃燒功率(P = 10、12、15 kW),且燃燒器以一內部燃燒模式運行。利用紅外線熱像儀搭配卷積神經網絡來量測和預測溫度,並以熱電偶之溫度數據為標準進行校正,目標為建立智慧化非接觸式溫度量測方法。結果顯示,燃燒器表面溫度隨著混氫比例和功率增加而上升,於功率P = 15 kW及XH2 = 50%條件下,有最高之溫度分佈;[NOx]最高為31 ppm和[CO] = 13.5 ppm (均經3% O2校正),證明Ni-Al多孔介質燃燒器是一低[NOx]低[CO]之潔淨燃燒器。另外,透過人工智慧,來預測多孔介質燃燒器的溫度,並且減少量測誤差。最後,於應用方面,本研究使用三支以等距三角排列之多孔介質燃燒器,搭配管狀和鰭管式熱交換器,建置一創新型熱水器,並量測其熱效率。此創新熱水器於當量比= 0.8、功率P = 36 kW及XH2 = 0%之條件下,熱效率可達91%,當混氫比例增加至XH2 = 50%時,其熱效率更可高達98%。上述之研究成果,對於綠色能源及智慧化溫度量測方面應有所助益。
摘要(英) This thesis reports the performance of a low-NOx porous radiant burner using lean premixed methane/air mixture at a fixed equivalence ratio of  = 0.65, blending with varying hydrogen volume percentages (XH2 = 10%, 30%, 50%). Surface temperature distributions of porous radiant burner and its variations of [NOx] and [CO] after hydrogen addition are measured and analyzed. The Ni-Al porous radiant burner, fabricated through high-temperature self-propagating synthesis method, features a dome-shaped hollow cylindrical structure with a central dome height of 150 mm, an outer diameter of 66 mm, a porous media thickness of 9 mm, and a porosity of approximately 0.6. Experiments are conducted at three different power levels (P = 10, 12, and 15 kW), with the burner operating in an internal combustion mode. Temperature distributions are measured using an infrared thermal imaging camera, predicted by a convolutional neural network and calibrated by thermocouples to develop an intelligent, non-contact temperature measurement method. Results show that the surface temperatures of the burner increase with increasing the hydrogen blending ratio as well as the power levels. At conditions of P = 15 kW and XH2 = 50% with the highest temperature distribution, the highest [NOx] and [CO] are 31 ppm and 13.5 ppm, respectively (both corrected to 3% O2), demonstrating that the Ni-Al porous radiant burner is a clean combustion device having low [NOx] and low [CO] emissions simultaneously. Furthermore, we apply artificial intelligence to predict the temperature distributions of the porous burner and to reduce measurement errors. For the practical application, this work implements three porous media burners arranged in an equilateral triangular configuration together with tubular and finned heat exchangers to construct an innovative water heater of high thermal efficiency. Under conditions of  = 0.8, power P = 36 kW, and XH2 = 0%, such a novel water heater achieves 91% thermal efficiency. When blending with the hydrogen at XH2 = 50%, the thermal efficiency increases up to 98%. These results should be useful to the green energy applications and intelligent temperature measurement technologies.
關鍵字(中) ★ 多孔性介質輻射燃燒器
★ 表面溫度量測
★ 低氮氧化物排放
★ 卷積神經網絡
★ 創新型多孔介質熱水器
關鍵字(英) ★ Porous radiant burner
★ surface temperature measurement
★ low NOx emissions
★ convolutional neural network
★ novel porous media water heater
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究動機 1
1.2 探討問題 2
1.3 解決方法 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 多孔性介質燃燒器 4
2.2 混氫燃燒技術 7
2.3 人工智慧技術於燃燒領域之應用 9
2.2.1 溫度量測及汙染物排放分析 9
2.2.2 火焰型態分析 14
第三章 實驗設備與方法 16
3.1 多孔性介質熱輻射燃燒系統 16
3.2 實驗燃氣條件計算 17
3.3 多孔性介質燃燒器溫度量測 18
3.4 紅外線熱成像攝影技術及溫度校正 19
3.5 污染物排放量測方式 20
3.6 卷積神經網絡 22
3.6.1 基本架構 22
3.6.2 VGG-16模型 26
3.7 實驗流程 28
第四章 結果與討論 29
4.1 甲烷混氫之多孔性介質燃燒器性能量測 29
4.1.1 多孔性介質燃燒器表面溫度 29
4.1.2 多孔性介質燃燒器污染物排放濃度 31
4.2 人工智慧輔助溫度量測 33
4.3 創新型多孔性介質熱水器及其熱效率量測 36
4.3.1 水流量和燃燒器配置對熱效率之影響 38
4.3.2 燃燒功率對熱效率之影響 39
4.3.3 混氫比例對熱效率之影響 40
第五章 結論與未來工作 42
5.1 結論 42
5.2 未來工作 44
參考文獻 45
參考文獻 [1]J. Fu, L. Zhong, D. Zhao, Q. Liu, J. Shu, F. Zhou, J. Liu, Effects of hydrogen addition on combustion, thermodynamics and emission performance of high compression ratio liquid methane gas engine, Fuel 283 (2021) 119348.
[2]S. Wood, A. T. Harris, Porous burners for lean-burn applications, Prog. Energy Combust. Sci. 34 (2008) 667-684.
[3]Guillaume Vignat, Bassem Akoush, Edna R. Toro, Emeric Boigne, Matthias Ihme, Combustion of lean ammonia-hydrogen fuel blends in a porous media burner, Proc. Combust. Inst. 39 (2023) 4195-4204.
[4]R.V. Fursenko, I.A. Yakovlev, E.S. Odintsov, S.D. Zambalov, S.S. Minaev, Pore-scale flame dynamics in a one-layer porous burner, Combust. Flame 235 (2022) 111711.
[5]Maznoy, A. Kirdyashkin, V. Kitlera, N. Pichugin, V. Salamatov, K. Tcoi, Self-propagating high-temperature synthesis of macroporous B2+L12 Ni-Al intermetallics used in cylindrical radiant burners, J. Alloys Compd. 792 (2019) 561-573.
[6]R. Fursenko, A. Maznoy, E. Odintsova, A. Kirdyashkin, S. Minaev, K. Sudarshan, Temperature and radiative characteristics of cylindrical porous Ni–Al burners, Int. J. Heat Mass Transfer 98 (2016) 277-284.
[7]A. Maznoy, A. Kirdyashkin, S. Minaev, A. Markov, N. Pichugin, E. Yakovlev, A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners, Energy 160 (2018) 399-409.
[8]I. Yakovlev, A. Maznoy, S. Zambalov, Pore-scale study of complex flame stabilization phenomena in thin-layered radial porous burner, Combust. Flame 231 (2021) 111468.
[9]A. Maznoy, N. Pichugin, I. Yakovlev, R. Fursenko, D. Petrov, S.S. Shy, Fuel interchangeability for lean premixed combustion in cylindrical radiant burner operated in the internal combustion mode, Appl. Therm. Eng. 186 (2021) 115997.
[10]P. Zainith, N.K. Mishra, Numerical study for the combustion analysis of wood volatiles in porous radiant burner for the application of biomass cooking stove, Int. J. Therm. Sci. 196 (2024) 108708.
[11]S. Deb, L.K. Kaushik, M.A. Kumar, S.H.V. Satish, P. Muthukumar, Clustered Porous Radiant Burner: A cleaner alternative for cooking systems in small and medium scale applications, J. Clean. Prod. 308 (2021) 127276.
[12]S. Deb, P. Muthukumar, Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications, Energy 219 (2021) 119581.
[13]G. Coskun, Z. Parlak, O. Yalc?nkaya, H. Pehlivan, V. Tur, O. Kosova, Methane-fueled porous burner combustion in a domestic boiler: Experimental and numerical study, Fuel 381 (2025) 133391.
[14]H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy 47 (2022) 26238-26264.
[15]Y. Yang, L. Tong, S. Yin, Y. Liu, L. Wang, Y. Qiu, Y. Ding, Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality, J. Clean. Prod. 376 (2022) 134347.
[16]E.R Hawkes, J.H. Chen, Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames, Combust. Flame 138 (2004) 242-258.
[17]A. Abdelhalim, A. Abdelhafez, M.A. Nemitallah, Effects of non-premixed H2 injection on the stability, shape, and combustion/emissions characteristics of premixed CH4/air flames: An experimental study, Fuel 365 (2024) 131213.
[18]T.T. Wang, Y. Zhang, H. Zhang, J.F. Lyu, Stability and emissions of hydrogen-enriched methane flames on metal fiber surface burners, Int. J. Hydrogen Energy 72 (2024) 1308-1320.
[19]H.M. Dai, B.Q. Zhang, Z.Y Li, J.J Wu, Combustion characteristics of a porous media burner with partial hydrogen injection, Int. J. Hydrogen Energy 47 (2022) 1092-1102.
[20]H.S. Kim, V.K. Arghode, A.K. Gupta, Flame characteristics of hydrogen-enriched methane-air premixed swirling flames, Int. J. Hydrogen Energy 34 (2009) 1063-1073.
[21]H.S. Kim, V.K. Arghode, M.B. Linck, A.K. Gupta, Hydrogen addition effects in a confined swirl-stabilized methane-air flame, Int. J. Hydrogen Energy 34 (2009) 1054-1062.
[22]Y. Hua, Z. Wang, X. Yuan, Y.B. Li, W. Wu, N. Aubry, Estimation of steady-state temperature field in Multichip Modules using deep convolutional neural network, Therm. Sci. Eng. Prog. 40 (2023) 101755.
[23]X. Zhou, D. Lei, C. Long, J. Nie, H. Liu, InfraNet: Accurate forehead temperature measurement framework for people in the wild with monocular thermal infrared camera, Neural Networks 166 (2023) 501-511.
[24]D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, C. Yang, Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision, IEEE Trans. Instrum. Meas. 86 (2019) 3576-3588.
[25]R. Laubscher, P. Rousseau, Application of generative deep learning to predict temperature, flow and species distributions using simulation data of a methane combustor, Int. J. Heat Mass Tran. 163 (2020) 120417.
[26]S. Golgiyaz, M.F. Talu, C. Onat, Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image, Fuel 255 (2019) 115827.
[27]Z.Z. Han, X.Y. Tang, M.M. Hossain, C.L. Xu, Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis, Combust. Flame 258 (2023) 113069.
[28]Z. Han, J. Li, B. Zhang, M.M. Hossain, C. Xu, Prediction of combustion state through a semi-supervised learning model and flame imaging, Fuel 289 (2021) 119745.
[29]G. Zhang, H. Xu, D. Wu, J. Yang, M.E. Morsy, M. Jangi, R. Cracknell, W. Kim, Deep learning-driven analysis for cellular structure characteristics of spherical premixed hydrogen-air flames, Int. J. Hydrogen Energy 68 (2024) 63-73.
[30]M. Gharib, P. Tischer, O. Schulze, M. Grabner, A. Richter, Flame lift-off detector based on deep learning neural networks, Combust. Flame 260 (2024) 113215.
[31]H. Biteau, T. Steinhaus, N. Bal, J.L. Torero, G. Marlair, C. Schemel, A. Simeoni, Calculation methods for the heat release rate of materials of unknown composition, Fire Saf. Sci. 9 (2008) 1165-1176.
[32]黃逸芳,氫燃燒器與低氮氧化物燃燒器實作研究,國立中央大學機械工程研究所,碩士論文,2006年7月。
[33]S. Tammina, Transfer learning using VGG-16 with deep convolutional neural network for classifying images, Int. J. Sci. Res. Publications 9 (2019) 9420.
[34]B. Ding, H.M. Qian, J. Zhou, Activation functions and their characteristics in deep neural networks, 30th Chinese Control And Decision Conference, Shenyang, China, June 9-11, 2018,
https://ieeexplore.ieee.org/abstract/document/8407425
[35]A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Proc. Adv. Neural Inf. Process. Syst. 60 (2017) 84-90.
[36]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, 2015 IEEE Conf. Comput. Vis. Pattern Recognit, Boston, USA, June 7-12, 2015,
https://arxiv.org/pdf/1409.4842
[37]K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2016 IEEE Conf. Comput. Vis. Pattern Recognit, Las Vegas, USA, June 27-30, 2016,
https://ieeexplore.ieee.org/document/7780459
[38]K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 3rd International Conference on Learning Representations, San Diego, USA, May 7-9, 2015,
https://arxiv.org/pdf/1409.1556
[39]P. Pugazhendi, G.B. Kannaiyan, S.S. Anandan, C. Somasundaram, Analysis of mango fruit surface temperature using thermal imaging and deep learning, Int. J. Food Eng. 19 (2023) 257-269.
指導教授 施聖洋(Shy, Shenqyang (Steven)) 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明