參考文獻 |
[1]J. Fu, L. Zhong, D. Zhao, Q. Liu, J. Shu, F. Zhou, J. Liu, Effects of hydrogen addition on combustion, thermodynamics and emission performance of high compression ratio liquid methane gas engine, Fuel 283 (2021) 119348.
[2]S. Wood, A. T. Harris, Porous burners for lean-burn applications, Prog. Energy Combust. Sci. 34 (2008) 667-684.
[3]Guillaume Vignat, Bassem Akoush, Edna R. Toro, Emeric Boigne, Matthias Ihme, Combustion of lean ammonia-hydrogen fuel blends in a porous media burner, Proc. Combust. Inst. 39 (2023) 4195-4204.
[4]R.V. Fursenko, I.A. Yakovlev, E.S. Odintsov, S.D. Zambalov, S.S. Minaev, Pore-scale flame dynamics in a one-layer porous burner, Combust. Flame 235 (2022) 111711.
[5]Maznoy, A. Kirdyashkin, V. Kitlera, N. Pichugin, V. Salamatov, K. Tcoi, Self-propagating high-temperature synthesis of macroporous B2+L12 Ni-Al intermetallics used in cylindrical radiant burners, J. Alloys Compd. 792 (2019) 561-573.
[6]R. Fursenko, A. Maznoy, E. Odintsova, A. Kirdyashkin, S. Minaev, K. Sudarshan, Temperature and radiative characteristics of cylindrical porous Ni–Al burners, Int. J. Heat Mass Transfer 98 (2016) 277-284.
[7]A. Maznoy, A. Kirdyashkin, S. Minaev, A. Markov, N. Pichugin, E. Yakovlev, A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners, Energy 160 (2018) 399-409.
[8]I. Yakovlev, A. Maznoy, S. Zambalov, Pore-scale study of complex flame stabilization phenomena in thin-layered radial porous burner, Combust. Flame 231 (2021) 111468.
[9]A. Maznoy, N. Pichugin, I. Yakovlev, R. Fursenko, D. Petrov, S.S. Shy, Fuel interchangeability for lean premixed combustion in cylindrical radiant burner operated in the internal combustion mode, Appl. Therm. Eng. 186 (2021) 115997.
[10]P. Zainith, N.K. Mishra, Numerical study for the combustion analysis of wood volatiles in porous radiant burner for the application of biomass cooking stove, Int. J. Therm. Sci. 196 (2024) 108708.
[11]S. Deb, L.K. Kaushik, M.A. Kumar, S.H.V. Satish, P. Muthukumar, Clustered Porous Radiant Burner: A cleaner alternative for cooking systems in small and medium scale applications, J. Clean. Prod. 308 (2021) 127276.
[12]S. Deb, P. Muthukumar, Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications, Energy 219 (2021) 119581.
[13]G. Coskun, Z. Parlak, O. Yalc?nkaya, H. Pehlivan, V. Tur, O. Kosova, Methane-fueled porous burner combustion in a domestic boiler: Experimental and numerical study, Fuel 381 (2025) 133391.
[14]H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy 47 (2022) 26238-26264.
[15]Y. Yang, L. Tong, S. Yin, Y. Liu, L. Wang, Y. Qiu, Y. Ding, Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality, J. Clean. Prod. 376 (2022) 134347.
[16]E.R Hawkes, J.H. Chen, Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames, Combust. Flame 138 (2004) 242-258.
[17]A. Abdelhalim, A. Abdelhafez, M.A. Nemitallah, Effects of non-premixed H2 injection on the stability, shape, and combustion/emissions characteristics of premixed CH4/air flames: An experimental study, Fuel 365 (2024) 131213.
[18]T.T. Wang, Y. Zhang, H. Zhang, J.F. Lyu, Stability and emissions of hydrogen-enriched methane flames on metal fiber surface burners, Int. J. Hydrogen Energy 72 (2024) 1308-1320.
[19]H.M. Dai, B.Q. Zhang, Z.Y Li, J.J Wu, Combustion characteristics of a porous media burner with partial hydrogen injection, Int. J. Hydrogen Energy 47 (2022) 1092-1102.
[20]H.S. Kim, V.K. Arghode, A.K. Gupta, Flame characteristics of hydrogen-enriched methane-air premixed swirling flames, Int. J. Hydrogen Energy 34 (2009) 1063-1073.
[21]H.S. Kim, V.K. Arghode, M.B. Linck, A.K. Gupta, Hydrogen addition effects in a confined swirl-stabilized methane-air flame, Int. J. Hydrogen Energy 34 (2009) 1054-1062.
[22]Y. Hua, Z. Wang, X. Yuan, Y.B. Li, W. Wu, N. Aubry, Estimation of steady-state temperature field in Multichip Modules using deep convolutional neural network, Therm. Sci. Eng. Prog. 40 (2023) 101755.
[23]X. Zhou, D. Lei, C. Long, J. Nie, H. Liu, InfraNet: Accurate forehead temperature measurement framework for people in the wild with monocular thermal infrared camera, Neural Networks 166 (2023) 501-511.
[24]D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, C. Yang, Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision, IEEE Trans. Instrum. Meas. 86 (2019) 3576-3588.
[25]R. Laubscher, P. Rousseau, Application of generative deep learning to predict temperature, flow and species distributions using simulation data of a methane combustor, Int. J. Heat Mass Tran. 163 (2020) 120417.
[26]S. Golgiyaz, M.F. Talu, C. Onat, Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image, Fuel 255 (2019) 115827.
[27]Z.Z. Han, X.Y. Tang, M.M. Hossain, C.L. Xu, Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis, Combust. Flame 258 (2023) 113069.
[28]Z. Han, J. Li, B. Zhang, M.M. Hossain, C. Xu, Prediction of combustion state through a semi-supervised learning model and flame imaging, Fuel 289 (2021) 119745.
[29]G. Zhang, H. Xu, D. Wu, J. Yang, M.E. Morsy, M. Jangi, R. Cracknell, W. Kim, Deep learning-driven analysis for cellular structure characteristics of spherical premixed hydrogen-air flames, Int. J. Hydrogen Energy 68 (2024) 63-73.
[30]M. Gharib, P. Tischer, O. Schulze, M. Grabner, A. Richter, Flame lift-off detector based on deep learning neural networks, Combust. Flame 260 (2024) 113215.
[31]H. Biteau, T. Steinhaus, N. Bal, J.L. Torero, G. Marlair, C. Schemel, A. Simeoni, Calculation methods for the heat release rate of materials of unknown composition, Fire Saf. Sci. 9 (2008) 1165-1176.
[32]黃逸芳,氫燃燒器與低氮氧化物燃燒器實作研究,國立中央大學機械工程研究所,碩士論文,2006年7月。
[33]S. Tammina, Transfer learning using VGG-16 with deep convolutional neural network for classifying images, Int. J. Sci. Res. Publications 9 (2019) 9420.
[34]B. Ding, H.M. Qian, J. Zhou, Activation functions and their characteristics in deep neural networks, 30th Chinese Control And Decision Conference, Shenyang, China, June 9-11, 2018,
https://ieeexplore.ieee.org/abstract/document/8407425
[35]A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Proc. Adv. Neural Inf. Process. Syst. 60 (2017) 84-90.
[36]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, 2015 IEEE Conf. Comput. Vis. Pattern Recognit, Boston, USA, June 7-12, 2015,
https://arxiv.org/pdf/1409.4842
[37]K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2016 IEEE Conf. Comput. Vis. Pattern Recognit, Las Vegas, USA, June 27-30, 2016,
https://ieeexplore.ieee.org/document/7780459
[38]K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 3rd International Conference on Learning Representations, San Diego, USA, May 7-9, 2015,
https://arxiv.org/pdf/1409.1556
[39]P. Pugazhendi, G.B. Kannaiyan, S.S. Anandan, C. Somasundaram, Analysis of mango fruit surface temperature using thermal imaging and deep learning, Int. J. Food Eng. 19 (2023) 257-269. |