參考文獻 |
[1] S. Pattnaik, D.B. Karunakar, P.K. Jha, Developments in investment casting process-a review, Journal of Materials Processing Technology 212 (11) (2012) 2332–2348.
[2] S. Kumar, D. B. Karunakar, Characterization and properties of ceramic shells in investment casting process, International Journal of Metalcasting 15 (2021) 98-107.
[3[ R.Z. Dong, W.H. Wang, K. Cui, Y.B. Wang, Z.C. Wang, K.Y. Kang, R.S. Jiang, An investigation of ceramic shell thickness uniformity and its impact on precision in turbine blade investment casting, Journal of Manufacturing Processes 113 (2024) 507-522.
[4] P.H. Huang, J.K. Kuo, M.J. Guo, Removal of Cr Mo alloy steel components from investment casting gating system using vibration excited fatigue failure, The International Journal of Advanced Manufacturing Technology 89 (2017) 101–111.
[5] X.H. Zhi, Y.J. Han, X.M. Yuan, Casting process optimization for the impellor of 200ZJA slurry pump, The International Journal of Advanced Manufacturing Technology 77 (2015) 1703–1710.
[6] P.H. Huang, B.T. Wang, Y.T. Chen, An effective method for separating casting components from the runner system using vibration-induced fatigue damage, The International Journal of Advanced Manufacturing Technology 74 (2014) 1275–1282.
[7] R.Z. Dong, W.H. Wang, T.R. Zhang, R.S. Jiang R, Z.N. Yang, K. Cui, Y.B. Wang, Ensemble learning-enabled early prediction of dimensional accuracy for complex products during investment casting, Journal of Manufacturing Processes 113 (2024) 291–306.
[8] P.H. Huang, W.J. Wu, C.H. Shieh, Compute-aided design of low pressure die-casting process of A356 aluminum wheels, Applied Mechanics and Materials 864 (2016) 173–178.
[9] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925–6930.
[10] P. Huang, G. Lu, Q. Yan, P. Mao, Effect of ceramic and nylon ?ber content on composite silica sol slurry properties and bending strength of investment casting shell, Materials 12 (17) (2019) 2788.
[11] H.J. Ma, X.D. Liu, K. Lyu, H. Zhang, S.D. Meng, Effect of constraint removal on single-crystal blade dimensions during investment casting, Journal of Manufacturing Processes 119 (8) (2024) 73–86.
[12] S.N. Bansode, V.M. Phalle, S.S. Mantha, In?uence of slurry composition on mould properties and shrinkage of investment casting, Transactions of the Indian Institute of Metals 73 (2020) 763–773.
[13] J. Bundy, S. Viswanathan, Characterization of zircon-based slurries for investment casting, International Journal of Metalcasting 3 (2009) 27-37.
[14] J. E. Kanyo, S. Schaffoner, R. S. Uwanyuze, K. S. Leary, An overview of ceramic molds for investment casting of nickel super-alloys, Journal of the European Ceramic Society 40 (15) (2020) 4955-4973.
[15] M. Jolly, L. Katgerman, Modelling of defects in aluminium cast products, Progress in Materials Science 123 (2022) 100824.
[16] C. Yuan S. Jones S, Investigation of fibre modified ceramic moulds for investment casting, Journal of the European Ceramic Society 23 (3) (2003) 399-407.
[17] P. Wisniewski, Evaluating silicon carbide-based slurries and molds for the manufacture of aircraft turbine components by the investment casting, Crystals 10 (6) (2020) 433.
[18] W. Zheng, J.M. Wu, S. Chen, C.S. Wang, C.L. Liu, S.B. Hua, K.B. Yu, J. Zhang, J.X. Zhang, Y.S. Shi, Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography, Journal of Advanced Ceramics 10 (2021) 1381–1388.
[19] C.J. Bae, D. Kim, J. W. Halloran, Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing, Journal of the European Ceramic Society 39 (2-3) (18) (2019) 618-623.
[20] L. A. Orlova, A. S. Chainikova, N. V. Popovich, Yu. E. Lebedeva, Composites based on aluminum-silicate glass ceramic with discrete fillers, Glass and Ceramics 70 (2013) 149-154.
[21] C. Hu, X.T. Huang, H.L. Liang, S.G. Chen, Y.L. Huo, H.L. Liu, J. Tang, Y.F. Chen, Fabrication and properties of porous carbon preforms for making reaction formed SiC, Key Engineering Materials 697 (2016) 169–172.
[22] H. Nakano, K. Watari, Y. Kinemuchi, K. Ishizaki, K. Urabe, Microstructural characterization of high-thermal-conductivity SiC ceramics, Journal of the European Ceramic Society 24 (14) (2004) 3685-3690.
[23] S.I. Yun, S. Nahm, S.W. Park, Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC, Ceramics International 48 (1) (2022) 1429-1438.
[24] Y.H. Kim, Y.W. Kim, W.S. Seo, Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity, Journal of the European Ceramic Society 40 (7) (2020) 2623-2633.
[25] Y. Bai, J. Xing, S. Ma, Q. Huang, Y. He, Z. Liu, Y. Gao, Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al–20 wt.% Al2O3 composites, Materials Characterization 78 (2013) 69-78.
[26] S.T. Aruna, N. Balaji, J. Shedthi, V.W. Grips, Effect of critical plasma spray parameters on the microstructure, micro-hardness and wear and corrosion resistance of plasma sprayed alumina coatings, Surface and Coatings Technology 208 (2012) 92-100.
[27] O.P. Oladijo, A.P.I. Popoola, M. Booi, J. Fayomi, L.L. Collieus, Corrosion and mechanical behaviour Of Al2O3 TiO2 composites produced by spark plasma sintering, South African Journal of Chemical Engineering 33 (2020) 58-66.
[28] R. Barea, M. Belmonte, M. Osendi, P. Miranzo, Thermal conductivity of Al2O3/SiC platelet composites, Journal of the European Ceramic Society 23 (11) (2003) 1773–1778.
[29] C. Hu, Y. Chen, T. Yang, H. Liu, X. Huang, Y. Huo, Z. Jia, H. Wang, L. Hu, H. Sun, C. Wang, B. Gang, H. Wang, Effect of SiC powder on the properties of SiC slurry for stereolithography, Ceramics International 47 (9) (2021) 12442-12449.
[30] K.K. Sadhu, N. Mandal, R.R. Sahoo, SiC/graphene reinforced aluminum metal matrix composites prepared by powder metallurgy: A review, Journal of Manufacturing Processes 91 (2023) 10-43.
[31] S. Somiya, Y. Inomata, Silicon carbide ceramics-1: Fundamental and solid reaction, Elsevier Applied Science, New York, United States, 1991.
[32] B. Lanfant, Y. Leconte, G. Bonnefont, V. Garnier, Y. Jorand, S.L. Gallet, M. Pinault, N.H. Boime, F. Bernard, G. Fantozzi, Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nano-structured SiC ceramics, Journal of the European Ceramic Society 35 (13) (2015) 3369-3379.
[33] M. Ma?ek, P. Wi?niewski, H. Matysiak, M. Zagorska, K.J. Kurzyd?owski, Technological properties of SiC-based ceramic slurries for manufacturing investment casting shell moulds, Archives of Metallurgy and Materials, 59 (3) (2014) 1059-1062.
[34] Y. Jing, X. Deng, J. Li, C. Bai, W. Jiang, Fabrication and properties of SiC/mullite composite porous ceramics, Ceramics International 40 (1) (2014) 1329–1334.
[35] S. Ding, S Zhu, Y. Zeng, D. Jiang, Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics, Ceramics International 32 (4) (2006) 461–466.
[36] Y.C. Wang, C.Y. Kao, C.M. Chen, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Effects of Al2O3 and SiC micro-scale powder addition on mechanical, thermal and physical properties of reinforced shell for investment casting, Ceramics International In Press, Corrected Proof. (2024).
[37] S. Pattnaik, M.K. Sutar, Enhancement of ceramic slurry rheology in investment casting process, Arabian journal for science and engineering, 46 (12) (2021) 12065–12076.
[38] P. Wi?niewski, Evaluating silicon carbide-based slurries and molds for the manufacture of aircraft turbine components by the investment casting, Crystals 10 (6) (2020) 433.
[39] P. Wi?niewski, R. Sitek, A. Towarek, E. Choi?ska, D. Moszczy?ska, J. Mizera, Molding binder influence on the porosity and gas permeability of ceramic casting molds, Materials 13 (12) (2020) 2735.
[40] X. Chen, C. Liu, W. Zheng, J. Han, L. Zhang, C. Liu, High strength silica-based ceramics material for investment casting applications: Effects of adding nanosized alumina coatings, Ceramics International 46 (1) (2019) 196–203.
[41] Y.H. Kim, J.G. Yeo, J.S. Lee, S.C. Choi, Influence of silicon carbide as a mineralizer on mechanical and thermal properties of silica-based ceramic cores, Ceramics International 42 (13) (2016) 14738–14742.
[42] C. Hu, Y. Chen, T. Yang, H. Liu, X. Huang, H. Yanli, Z. Jia, H. Wang, L. Hu, H. Sun, Effect of SiC powder on the properties of SiC slurry for stereolithography, Ceramics International 47 (9) (2021) 12442–12449.
[43] I.P. Nanda, The Effect of stucco sand size on the shell mould permeability and modulus of rupture (MOR). Journal of Aeronautical 13 (1) (2018) 5-9.
[44] Z. Wen, J.M. Wu, S. Chen, C. Wang, C. Liu, S.B. Hua, K.B. Yu, J. Zhang, Y. Shi, Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography, Journal of Advanced Ceramics 10 (6) (2021) 1381–1388.
[45] M. Xu, S.N. Lekakh, V. Richards, Thermal property database for investment casting shells, International Journal of Metalcasting 10 (3) (2016) 329–337.
[46] Y. Venkat, K.R. Choudary, D.K. Das, A.K. Pandey, S. Singh, Ceramic shell moulds for investment casting of low-pressure turbine rotor blisk, Ceramics International 47 (4) (2020) 5663–5670.
[47] H. Jafari, M.H. Idris, A. Ourdjini, M.R.A. Kadir, An investigation on interfacial reaction between in-situ melted AZ91D magnesium alloy and ceramic shell mold during investment casting process, Materials chemistry and physics, 138 (2-3) (2013) 672–681.
[48] S. Singh, R. Singh, Precision investment casting: A state of art review and future trends, Journal Engineering Manufacture 0954-4054 (2015) 1-22.
[49] H. Jafari, M.H. Idris., A. Ourdjini, A Review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression, Materials and Manufacturing Processes 28 (8) (2013) 843-856.
[50] Q. Wei, J. Zhong, Z. Xu, Q. Xu, B. Liu, Microstructure evolution and mechanical properties of ceramic shell moulds for investment casting of turbine blades by selective laser sintering, Ceramics International, 44 (11) (2018) 12088–12097.
[51] Y. Hao, J. Liu, J. Du, W. Zhang, Y. Xiao, S. Zhang, P. Yang, Effects of mold materials on the interfacial reaction between magnesium alloy and ceramic shell mold during investment casting, Metals 10 (2020) 991.
[52] S. Mishra, R. Ranjana, Reverse solidification path methodology for dewaxing ceramic shells in investment casting process, Materials and Manufacturing Processes 25 (12) (2010) 1385–1388.
[53] C.M. Cheah, C.K. Chua, C.W. Lee, C. Feng, K. Totong, Rapid prototyping and tooling techniques: a review of applications for rapid investment casting, The International Journal of Advanced Manufacturing Technology 25 (2005) 308-320.
[54] T.Y. Chen, Y.C. Wang, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Formation mechanism and improved remedy of thermal property of cold shut surface defects in Vortex Flow Meters: Numerical simulation and experimental verification in investment casting of 316 L stainless steel, Journal of Manufacturing Processes 120 (2024) 542-554.
[55] P.H. Huang, L.K.L. Shih, H.M. Lin, C.I. Chu, C.S. Chou, Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines, The International Journal of Advanced Manufacturing Technology 104 (2019) 2911-2923.
[56] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925-6930.
[57] C. Yuan, D. Compton, X. Cheng, N. Green, P. Withey, The influence of polymer content and sintering temperature on yttria face-coat moulds for TiAl casting. Journal of the European Ceramic Society 32 (16) (2012) 4041-4049.
[58] F. Wang, F. Li, B. He, B. Sun, Microstructure and strength of needle coke modified ceramic casting molds, Ceramics International 40 (1) (2014) 479-486.
[59] W. Xu, Y. Zhao, S. Sun, M. Liu, D. Ma, X. Liang, R. Tao, Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy, Materials Research Express 5 (4) (2018) 046504.
[60] H.W. Tseng, T.Y. Chen, Y.K. Kao, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter, The International Journal of Advanced Manufacturing Technology 127 (5) (2023) 2371-2385.
[61] R. Srinivasa, R. Patil, Characterization of casting and deformation process of a metal alloy, International Research Journal of Engineering and Technology 4 (2) (2017).
[62] Y. Zou, J. Malzbender, Development and optimization of porosity measurement techniques, Ceramics International, 42 (2016) 2861-2870.
[63] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925–6930.
[64] N. O’Sullivan, J. Mooney, D. Tanner, Enhancing permeability and porosity of ceramic shells for investment casting through pre-wetting, Journal of the European Ceramic Society 41 (16) (2021) 411–422.
[65] P. Pichler, B.J.Simonds, J.W. Sowards, G. Pottlacher, Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel, Journal of Materials Science, 55 (9) (2020) 4081-4093.
[66] Y. Miyata, M. Okugawa, Y. Koizumi, T. Nakano, Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for additive manufacturing (AM), Crystals, 11 (8) (2021) 856.
[67] C.H. Konrad, M. Brunner, K. Kyrgyzbaev, R. Volkl, U. Glatzel, Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings, Journal of Materials Processing Technology 211 (2) (2011) 181-186. |