博碩士論文 112323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.119.248.54
姓名 丁舒克(Sukhoiri Khoiruddin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熔模鑄造用碳化矽粉末增強型殼的力學、熱學和物理性能研究: 粉末目數和含量的影響
(Study on the mechanical, thermal, and physical properties of SiC powder-reinforced shell for investment casting process: the influence of powder mesh size and content)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-30以後開放)
摘要(中) 陶瓷殼模在熔模鑄造中扮演了重要的角色,可增加模具的強度,並具有所需的品質與
尺寸精度。在本文中,碳化矽 (SiC) 是一種具有良好強度、硬度、耐高溫性、化學穩
定性及熱導性的材料。對殼模的厚度進行了幾何學的研究;表面漿料由鋯石 (ZrSiO4)
粉末與 levasil FO830 粘結劑組成,而後備漿料則使用莫來石 (3Al2O3~2SiO2) 粉末與
膠狀二氧化矽粘結劑 (原殼) 加入 SiC 粉末。本研究探討將碳化矽(SiC)粉末4,000目
(微米級尺寸)與10,000目(奈米級尺寸),成分為5~25 wt%(4.5層)的微米級比例加入
熔模鑄造後備漿料中,對模殼的機械、熱、物性的影響,將與厚度為 4.5~8.5 層的原
殼進行比較。本研究的主要創新與發現是,以 4.5 層至 8.5 層不同厚度的原殼模取代
加入碳化矽 (SiC) 的殼模,其含量變化範圍為 5 至 25 wt%(原殼厚度 5.5、6.5 及
8.5 層可分別以 4,000 目 SiC 取代,其含量百分比分別為 5、10 及 25 wt% 4.5
層)。這顯示含有碳化矽 (SiC) 的殼模可以藉由考慮模具的強度、逸出氣體的流動,
以及在整個殼模與鑄造過程中產生的故障,來降低層厚。利用 MOR vs. 滲透率 vs.
HTC 提出殼模的優點圖 (FOMs),以了解含 SiC 強化的殼模能有效取代原殼模。這些結
果對投資鑄造業提供了重要的參考,因為投資鑄造業需要有效鑄造出具有非常嚴格精
度與尺寸的物件,並將生產成本與時間降至最低。
摘要(英) Ceramic shell molds in investment casting have played an important role in increasing the
strength of the mold and having the desired quality and dimensional accuracy. In this article,
silicon carbide (SiC) is a material that has good strength, hardness, resistance to high
temperatures, chemical stability, and thermal conductivity. The thickness of the shell mold has
been investigated geometrically; the surface slurry consists of zircon (ZrSiO4) powder with
levasil FO830 binder, while the backup slurry uses mullite (3Al2O3~2SiO2) powder with
colloidal silica binder (original shell) added SiC powder. This research investigates the effect
of the ratio of silicon carbide (SiC) powder 4,000 (micro-scale size) and 10,000 (nano-scale
size) mesh with a composition of 5 to 25 wt% (4.5 layer) on a microscopic scale into the
investment casting backup slurry on the mechanical, thermal, and physical properties of the
molded shell which will be compared with the original shell with thickness 4.5 to 8.5 layers.
The main innovation and finding of this research is that the shell mold with the original shell
with various mold thickness variations from 4.5 to 8.5 layers can be replaced with shell molds
adding silicon carbide (SiC) content of 4.5 layer thickness with contents variations ranging from
5 to 25 wt% (original shell with thickness 5.5, 6.5, and 8.5 layers can be replaced by SiC 4,000
mesh with percentage contents of 5, 10, and 25 wt% 4.5 layer, respectively). This suggests that
shell molds containing silicon carbide (SiC) can lower the thickness of layers by considering
the mold′s strength, the flow of escaping gas, and faults that arise throughout the shell mold and
casting processes. The figure of merit (FOMs) for the shell mold was proposed using the MOR
vs. permeability vs. HTC to see how effectively the shell mold reinforced with SiC content can
replace the original shell mold. These results provide an important reference for the investment
casting industry, which requires effectiveness in casting objects that have very strict accuracy
and dimensions and minimize production costs and time.
關鍵字(中) ★ 熔模鑄造
★ 碳化矽
★ 斷裂模數
關鍵字(英)
論文目次 Information i
摘要 ii
Abstract iii
Graphical Abstract iv
Acknowledgement v
Table of content v
List of figures viii
List of tables x
Nomenclatures xi
Chapter 1 Introduction 1
1.1. Background and motivation 1
Chapter 2 Literature review 4
2.1. Literature review 4
2.1.1. Literature review and research precision casting, shell mold paste additives and effect of heat transfer coefficient on precision casting 5
2.2. Novelty and contribution 5
2.3. Thesis writing structure 6
Chapter 3 Materials, Equipments, and experimental setup 7
3.1. Experimental equipment and materials 7
3.2. Procedure of slurry making 16
3.3. Preparation of specimens and calculation 21
3.3.1. Measurement of Porosity 21
3.3.2. Measurement of Modulus of rupture (MOR) 22
3.3.2. Measurement of Porosity 22
3.3.3. Measurement of Permeability 23
3.3.4. Measurement Heat transfer coefficient (HTC) 24
Chapter 4 Results and discussion 28
4.1. Porosity evaluation 28
4.2. Modulus of rupture (MOR) evaluation 29
4.2. Porosity evaluation 29
4.3. Permeability evaluation 30
4.4. Heat transfer coefficient (HTC) evaluation 32
4.5. Comprehensive discussion of figure of merit (FOM) in shell mold 33
Chapter 5 Conclusions and future works 36
5.1 Conclusions 36
5.2 Future works 37
References 38
參考文獻 [1] S. Pattnaik, D.B. Karunakar, P.K. Jha, Developments in investment casting process-a review, Journal of Materials Processing Technology 212 (11) (2012) 2332–2348.
[2] S. Kumar, D. B. Karunakar, Characterization and properties of ceramic shells in investment casting process, International Journal of Metalcasting 15 (2021) 98-107.
[3[ R.Z. Dong, W.H. Wang, K. Cui, Y.B. Wang, Z.C. Wang, K.Y. Kang, R.S. Jiang, An investigation of ceramic shell thickness uniformity and its impact on precision in turbine blade investment casting, Journal of Manufacturing Processes 113 (2024) 507-522.
[4] P.H. Huang, J.K. Kuo, M.J. Guo, Removal of Cr Mo alloy steel components from investment casting gating system using vibration excited fatigue failure, The International Journal of Advanced Manufacturing Technology 89 (2017) 101–111.
[5] X.H. Zhi, Y.J. Han, X.M. Yuan, Casting process optimization for the impellor of 200ZJA slurry pump, The International Journal of Advanced Manufacturing Technology 77 (2015) 1703–1710.
[6] P.H. Huang, B.T. Wang, Y.T. Chen, An effective method for separating casting components from the runner system using vibration-induced fatigue damage, The International Journal of Advanced Manufacturing Technology 74 (2014) 1275–1282.
[7] R.Z. Dong, W.H. Wang, T.R. Zhang, R.S. Jiang R, Z.N. Yang, K. Cui, Y.B. Wang, Ensemble learning-enabled early prediction of dimensional accuracy for complex products during investment casting, Journal of Manufacturing Processes 113 (2024) 291–306.
[8] P.H. Huang, W.J. Wu, C.H. Shieh, Compute-aided design of low pressure die-casting process of A356 aluminum wheels, Applied Mechanics and Materials 864 (2016) 173–178.
[9] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925–6930.
[10] P. Huang, G. Lu, Q. Yan, P. Mao, Effect of ceramic and nylon ?ber content on composite silica sol slurry properties and bending strength of investment casting shell, Materials 12 (17) (2019) 2788.
[11] H.J. Ma, X.D. Liu, K. Lyu, H. Zhang, S.D. Meng, Effect of constraint removal on single-crystal blade dimensions during investment casting, Journal of Manufacturing Processes 119 (8) (2024) 73–86.
[12] S.N. Bansode, V.M. Phalle, S.S. Mantha, In?uence of slurry composition on mould properties and shrinkage of investment casting, Transactions of the Indian Institute of Metals 73 (2020) 763–773.
[13] J. Bundy, S. Viswanathan, Characterization of zircon-based slurries for investment casting, International Journal of Metalcasting 3 (2009) 27-37.
[14] J. E. Kanyo, S. Schaffoner, R. S. Uwanyuze, K. S. Leary, An overview of ceramic molds for investment casting of nickel super-alloys, Journal of the European Ceramic Society 40 (15) (2020) 4955-4973.
[15] M. Jolly, L. Katgerman, Modelling of defects in aluminium cast products, Progress in Materials Science 123 (2022) 100824.
[16] C. Yuan S. Jones S, Investigation of fibre modified ceramic moulds for investment casting, Journal of the European Ceramic Society 23 (3) (2003) 399-407.
[17] P. Wisniewski, Evaluating silicon carbide-based slurries and molds for the manufacture of aircraft turbine components by the investment casting, Crystals 10 (6) (2020) 433.
[18] W. Zheng, J.M. Wu, S. Chen, C.S. Wang, C.L. Liu, S.B. Hua, K.B. Yu, J. Zhang, J.X. Zhang, Y.S. Shi, Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography, Journal of Advanced Ceramics 10 (2021) 1381–1388.
[19] C.J. Bae, D. Kim, J. W. Halloran, Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing, Journal of the European Ceramic Society 39 (2-3) (18) (2019) 618-623.
[20] L. A. Orlova, A. S. Chainikova, N. V. Popovich, Yu. E. Lebedeva, Composites based on aluminum-silicate glass ceramic with discrete fillers, Glass and Ceramics 70 (2013) 149-154.
[21] C. Hu, X.T. Huang, H.L. Liang, S.G. Chen, Y.L. Huo, H.L. Liu, J. Tang, Y.F. Chen, Fabrication and properties of porous carbon preforms for making reaction formed SiC, Key Engineering Materials 697 (2016) 169–172.
[22] H. Nakano, K. Watari, Y. Kinemuchi, K. Ishizaki, K. Urabe, Microstructural characterization of high-thermal-conductivity SiC ceramics, Journal of the European Ceramic Society 24 (14) (2004) 3685-3690.
[23] S.I. Yun, S. Nahm, S.W. Park, Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC, Ceramics International 48 (1) (2022) 1429-1438.
[24] Y.H. Kim, Y.W. Kim, W.S. Seo, Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity, Journal of the European Ceramic Society 40 (7) (2020) 2623-2633.
[25] Y. Bai, J. Xing, S. Ma, Q. Huang, Y. He, Z. Liu, Y. Gao, Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al–20 wt.% Al2O3 composites, Materials Characterization 78 (2013) 69-78.
[26] S.T. Aruna, N. Balaji, J. Shedthi, V.W. Grips, Effect of critical plasma spray parameters on the microstructure, micro-hardness and wear and corrosion resistance of plasma sprayed alumina coatings, Surface and Coatings Technology 208 (2012) 92-100.
[27] O.P. Oladijo, A.P.I. Popoola, M. Booi, J. Fayomi, L.L. Collieus, Corrosion and mechanical behaviour Of Al2O3 TiO2 composites produced by spark plasma sintering, South African Journal of Chemical Engineering 33 (2020) 58-66.
[28] R. Barea, M. Belmonte, M. Osendi, P. Miranzo, Thermal conductivity of Al2O3/SiC platelet composites, Journal of the European Ceramic Society 23 (11) (2003) 1773–1778.
[29] C. Hu, Y. Chen, T. Yang, H. Liu, X. Huang, Y. Huo, Z. Jia, H. Wang, L. Hu, H. Sun, C. Wang, B. Gang, H. Wang, Effect of SiC powder on the properties of SiC slurry for stereolithography, Ceramics International 47 (9) (2021) 12442-12449.
[30] K.K. Sadhu, N. Mandal, R.R. Sahoo, SiC/graphene reinforced aluminum metal matrix composites prepared by powder metallurgy: A review, Journal of Manufacturing Processes 91 (2023) 10-43.
[31] S. Somiya, Y. Inomata, Silicon carbide ceramics-1: Fundamental and solid reaction, Elsevier Applied Science, New York, United States, 1991.
[32] B. Lanfant, Y. Leconte, G. Bonnefont, V. Garnier, Y. Jorand, S.L. Gallet, M. Pinault, N.H. Boime, F. Bernard, G. Fantozzi, Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nano-structured SiC ceramics, Journal of the European Ceramic Society 35 (13) (2015) 3369-3379.
[33] M. Ma?ek, P. Wi?niewski, H. Matysiak, M. Zagorska, K.J. Kurzyd?owski, Technological properties of SiC-based ceramic slurries for manufacturing investment casting shell moulds, Archives of Metallurgy and Materials, 59 (3) (2014) 1059-1062.
[34] Y. Jing, X. Deng, J. Li, C. Bai, W. Jiang, Fabrication and properties of SiC/mullite composite porous ceramics, Ceramics International 40 (1) (2014) 1329–1334.
[35] S. Ding, S Zhu, Y. Zeng, D. Jiang, Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics, Ceramics International 32 (4) (2006) 461–466.
[36] Y.C. Wang, C.Y. Kao, C.M. Chen, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Effects of Al2O3 and SiC micro-scale powder addition on mechanical, thermal and physical properties of reinforced shell for investment casting, Ceramics International In Press, Corrected Proof. (2024).
[37] S. Pattnaik, M.K. Sutar, Enhancement of ceramic slurry rheology in investment casting process, Arabian journal for science and engineering, 46 (12) (2021) 12065–12076.
[38] P. Wi?niewski, Evaluating silicon carbide-based slurries and molds for the manufacture of aircraft turbine components by the investment casting, Crystals 10 (6) (2020) 433.
[39] P. Wi?niewski, R. Sitek, A. Towarek, E. Choi?ska, D. Moszczy?ska, J. Mizera, Molding binder influence on the porosity and gas permeability of ceramic casting molds, Materials 13 (12) (2020) 2735.
[40] X. Chen, C. Liu, W. Zheng, J. Han, L. Zhang, C. Liu, High strength silica-based ceramics material for investment casting applications: Effects of adding nanosized alumina coatings, Ceramics International 46 (1) (2019) 196–203.
[41] Y.H. Kim, J.G. Yeo, J.S. Lee, S.C. Choi, Influence of silicon carbide as a mineralizer on mechanical and thermal properties of silica-based ceramic cores, Ceramics International 42 (13) (2016) 14738–14742.
[42] C. Hu, Y. Chen, T. Yang, H. Liu, X. Huang, H. Yanli, Z. Jia, H. Wang, L. Hu, H. Sun, Effect of SiC powder on the properties of SiC slurry for stereolithography, Ceramics International 47 (9) (2021) 12442–12449.
[43] I.P. Nanda, The Effect of stucco sand size on the shell mould permeability and modulus of rupture (MOR). Journal of Aeronautical 13 (1) (2018) 5-9.
[44] Z. Wen, J.M. Wu, S. Chen, C. Wang, C. Liu, S.B. Hua, K.B. Yu, J. Zhang, Y. Shi, Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography, Journal of Advanced Ceramics 10 (6) (2021) 1381–1388.
[45] M. Xu, S.N. Lekakh, V. Richards, Thermal property database for investment casting shells, International Journal of Metalcasting 10 (3) (2016) 329–337.
[46] Y. Venkat, K.R. Choudary, D.K. Das, A.K. Pandey, S. Singh, Ceramic shell moulds for investment casting of low-pressure turbine rotor blisk, Ceramics International 47 (4) (2020) 5663–5670.
[47] H. Jafari, M.H. Idris, A. Ourdjini, M.R.A. Kadir, An investigation on interfacial reaction between in-situ melted AZ91D magnesium alloy and ceramic shell mold during investment casting process, Materials chemistry and physics, 138 (2-3) (2013) 672–681.
[48] S. Singh, R. Singh, Precision investment casting: A state of art review and future trends, Journal Engineering Manufacture 0954-4054 (2015) 1-22.
[49] H. Jafari, M.H. Idris., A. Ourdjini, A Review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression, Materials and Manufacturing Processes 28 (8) (2013) 843-856.
[50] Q. Wei, J. Zhong, Z. Xu, Q. Xu, B. Liu, Microstructure evolution and mechanical properties of ceramic shell moulds for investment casting of turbine blades by selective laser sintering, Ceramics International, 44 (11) (2018) 12088–12097.
[51] Y. Hao, J. Liu, J. Du, W. Zhang, Y. Xiao, S. Zhang, P. Yang, Effects of mold materials on the interfacial reaction between magnesium alloy and ceramic shell mold during investment casting, Metals 10 (2020) 991.
[52] S. Mishra, R. Ranjana, Reverse solidification path methodology for dewaxing ceramic shells in investment casting process, Materials and Manufacturing Processes 25 (12) (2010) 1385–1388.
[53] C.M. Cheah, C.K. Chua, C.W. Lee, C. Feng, K. Totong, Rapid prototyping and tooling techniques: a review of applications for rapid investment casting, The International Journal of Advanced Manufacturing Technology 25 (2005) 308-320.
[54] T.Y. Chen, Y.C. Wang, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Formation mechanism and improved remedy of thermal property of cold shut surface defects in Vortex Flow Meters: Numerical simulation and experimental verification in investment casting of 316 L stainless steel, Journal of Manufacturing Processes 120 (2024) 542-554.
[55] P.H. Huang, L.K.L. Shih, H.M. Lin, C.I. Chu, C.S. Chou, Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines, The International Journal of Advanced Manufacturing Technology 104 (2019) 2911-2923.
[56] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925-6930.
[57] C. Yuan, D. Compton, X. Cheng, N. Green, P. Withey, The influence of polymer content and sintering temperature on yttria face-coat moulds for TiAl casting. Journal of the European Ceramic Society 32 (16) (2012) 4041-4049.
[58] F. Wang, F. Li, B. He, B. Sun, Microstructure and strength of needle coke modified ceramic casting molds, Ceramics International 40 (1) (2014) 479-486.
[59] W. Xu, Y. Zhao, S. Sun, M. Liu, D. Ma, X. Liang, R. Tao, Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy, Materials Research Express 5 (4) (2018) 046504.
[60] H.W. Tseng, T.Y. Chen, Y.K. Kao, C.F. Huang, Y.C. Liu, S.C. Lee, C.W. Chan, Y.K. Fuh, Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter, The International Journal of Advanced Manufacturing Technology 127 (5) (2023) 2371-2385.
[61] R. Srinivasa, R. Patil, Characterization of casting and deformation process of a metal alloy, International Research Journal of Engineering and Technology 4 (2) (2017).
[62] Y. Zou, J. Malzbender, Development and optimization of porosity measurement techniques, Ceramics International, 42 (2016) 2861-2870.
[63] K. Lu, Z. Duan, X. Liu, Y. Li, Effects of fibre length and mixing routes on fibre reinforced shell for investment casting, Ceramics International 45 (6) (2019) 6925–6930.
[64] N. O’Sullivan, J. Mooney, D. Tanner, Enhancing permeability and porosity of ceramic shells for investment casting through pre-wetting, Journal of the European Ceramic Society 41 (16) (2021) 411–422.
[65] P. Pichler, B.J.Simonds, J.W. Sowards, G. Pottlacher, Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel, Journal of Materials Science, 55 (9) (2020) 4081-4093.
[66] Y. Miyata, M. Okugawa, Y. Koizumi, T. Nakano, Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for additive manufacturing (AM), Crystals, 11 (8) (2021) 856.
[67] C.H. Konrad, M. Brunner, K. Kyrgyzbaev, R. Volkl, U. Glatzel, Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings, Journal of Materials Processing Technology 211 (2) (2011) 181-186.
指導教授 傅尹坤 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明