博碩士論文 111323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.137.208.89
姓名 黃彥勛(Yen-Hsun Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析
(Optimization of Wire Electrical Discharge Machining Parameters and Particle Tracking Simulation Analysis for 6-inch Silicon Carbide Wafer Ingot)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究★ 深切緩進電化學放電加工於石英玻璃之創成特性研究
★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究
★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-17以後開放)
摘要(中) 本研究是以6吋4H-SiC晶圓碇為研究材料,使用線放電加工機進行實驗,使用田口法探討脈衝放電時間(TON)、脈衝休止時間(TOFF)、開路電壓(OV)、伺服電壓(SV)對碳化矽的加工速度、表面粗糙度Ra、切槽損失量進行參數優化,並利用粒子追蹤模組模擬6吋碳化矽晶圓切片時加工渣堆積的現象,以模擬結果去分析實際切片的成果。
透過田口法加工厚度20 mm的碳化矽晶圓碇,發現脈衝放電時間對加工速度、表面粗糙度Ra、切槽損失量影響較大,持續時間越久,加工的速度越快,但表面粗糙度Ra以及切槽損失量結果較差,優化後最快加工速度可達到1.623 mm/min。
在粒子追蹤模組中利用不同沖水壓力分析6吋碳化矽切片時加工渣的堆積情況,模擬結果顯示較弱之沖水壓力堆積在加工區的粒子0.1 秒後才排出,較強之沖水壓力則只需0.06秒就能排出加工區,且經過計算粒子數量後,不同水壓對於排渣數量比率之差距最多可達到1091%。
分析實際切片晶圓之厚度均勻度及表面粗糙度Ra,結果顯示加工渣較容易堆積在晶圓中心,增加沖水壓力可以改善區域的表面粗糙度,但過大的沖水壓力則會造成晶圓破損。
摘要(英) This study utilizes 6-inch 4H-SiC wafer ingot as the research material and conducts experiments using a wire electrical discharge machine (WEDM). The Taguchi method is applied to optimize the parameters, including pulse-on time (TON), pulse-off time (TOFF), open circuit voltage (OV), and servo voltage (SV), to enhance the machining speed, surface roughness (Ra), and kerf loss of silicon carbide. Additionally, a particle tracking model is employed to simulate the accumulation of machining debris during the slicing of a 6-inch SiC wafer, and the simulation results are analyzed to assess the actual slicing performance.
Using the Taguchi method to machine 20 mm thick silicon carbide wafer ingot , it was found that pulse-on time has a significant impact on machining speed, surface roughness (Ra), and kerf loss. The longer the pulse-on time, the faster the machining speed; however, surface roughness (Ra) and kerf loss tend to worsen. After optimization, the maximum machining speed reached 1.623 mm/min.
The particle tracking model is used to analyze the accumulation of machining debris under different flushing pressures during the slicing process of 6-inch SiC wafers. The simulation results show that, under lower flushing pressure, debris remains in the machining area for 0.1 seconds before being discharged, whereas under higher flushing pressure, debris is discharged within 0.06 seconds. The difference in the amount ratio of debris discharged between different water pressures can reach up to 1091%.
The analysis of actual wafer thickness uniformity and surface roughness (Ra) indicates that debris tends to accumulate in the center of the wafer. Increasing the flushing pressure improves surface roughness in this region, but excessively high flushing pressure may lead to wafer damage.
關鍵字(中) ★ 線放電加工
★ 6吋
★ 碳化矽晶圓
★ 粒子追蹤
★ 田口法
關鍵字(英) ★ wire electrical discharge machining
★ 6-inch
★ silicon carbide wafer
★ particle tracking
★ taguchi method
論文目次 摘要 V
ABSTRACT VI
誌謝 VII
目錄 VIII
圖目錄 XII
表目錄 XV
第一章、 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.4 論文架構 11
第二章、 基本原理 13
2.1 放電加工基本原理 13
2.1.1 放電加工之材料移除機制 14
2.1.2 放電加工參數 18
2.2 田口法 22
第三章、 數值分析 25
3.1 模型設計 25
3.2 模擬條件 28
3.3 紊流 29
3.4 粒子追蹤 30
第四章、 田口法實驗規劃 33
4.1 實驗因子選擇 33
4.2 田口法實驗規劃應用於6吋碳化矽晶圓碇切邊 35
第五章、 實驗設備及方法 38
5.1 實驗材料 38
5.1.1 線電極材料 38
5.1.2 工件材料 39
5.2 實驗設備 40
5.2.1 線切割放電機 40
5.2.2 掃描式電子顯微鏡 42
5.2.3 U型外徑分厘卡 43
5.2.4 槓桿式量錶 44
5.2.5 表面粗糙度儀 45
5.3 實驗流程 46
5.4 實驗方法 47
5.4.1 6吋碳化矽晶圓碇切邊 47
5.4.2 6吋碳化矽晶圓碇切片 48
5.5 量測方法 49
5.6 實驗設置 52
第六章、 結果與討論 54
6.1 田口實驗結果與分析 54
6.1.1 加工速度 55
6.1.2 表面粗糙度Ra 58
6.1.3 切槽損失量 61
6.2 數值分析結果 65
6.2.1 不同加工位置加工渣排出情況 65
6.2.2 不同水壓對加工渣排出情況 69
6.3 . 晶圓厚度均勻度與表面粗糙度結果分析 72
6.3.1 加工後晶圓表面之觀察 72
6.3.2 厚度均勻度之分析 76
6.3.3 表面粗糙度Ra之分析 80
6.4 晶圓表面與加工渣成分分析 86
6.4.1 晶圓表面分析 86
6.4.2 加工渣成分分析 88
第七章、 結論 91
未來展望 93
參考文獻 94
參考文獻 [1] M. Yoshida and M. Kunieda, “Study on the Distribution of Scattered Debris Generated by a Single Pulse Discharge in EDM Process.,” Journal of The Japan Society of Electrical Machining Engineers, vol. 30, no. 64, pp. 27–36, 1996, doi: 10.2526/jseme.30.64_27.
[2] W. Y. Peng and Y. S. Liao, “Study of electrical discharge machining technology for slicing silicon ingots,” Journal of Materials Processing Technology, vol. 140, no. 1, pp. 274–279, Sep. 2003, doi: 10.1016/S0924-0136(03)00718-0.
[3] S. Clijsters, K. Liu, D. Reynaerts, and B. Lauwers, “EDM technology and strategy development for the manufacturing of complex parts in SiSiC,” Journal of Materials Processing Technology, vol. 210, no. 4, pp. 631–641, Mar. 2010, doi: 10.1016/j.jmatprotec.2009.11.012.
[4] H. Yamada, S. Yamaguchi, N. Yamamoto, ” vol. 717–720, pp. 861–864, 2012, doi: 10.4028/www.scientific.net/MSF.717-720.861.
[5] A. Kimura, Y. Okamoto, A. Okada, J. Ohya, and T. Yamauchi, “Fundamental Study on Multi-wire EDM Slicing of SiC by Wire Electrode with Track-shaped Section,” Procedia CIRP, vol. 6, pp. 232–237, Jan. 2013, doi: 10.1016/j.procir.2013.03.052.
[6] M. Ogawa, K. Mine, S. Fuchiyama, Y. Tawa, and T. Kato, “Development of Multi-Wire Electric Discharge Machining for SiC Wafer Processing,” vol. 778–780, pp. 776–779, 2014, doi: 10.4028/www.scientific.net/MSF.778-780.776.
[7] Y. Zhao, M. Kunieda, and K. Abe, “Experimental Investigations into EDM Behaviors of Single Crystal Silicon Carbide,” Procedia CIRP, vol. 6, pp. 135–139, Jan. 2013, doi: 10.1016/j.procir.2013.03.064.
[8] J. Punturat, V. Tangwarodomnukun, and C. Dumkum, “Surface characteristics and damage of monocrystalline silicon induced by wire-EDM,” Applied Surface Science, vol. 320, pp. 83–92, Nov. 2014, doi: 10.1016/j.apsusc.2014.09.074.
[9] G. Dongre, S. Zaware, U. Dabade, and S. S. Joshi, ,” Materials Science in Semiconductor Processing, vol. 39, pp. 793–806, Nov. 2015, doi: 10.1016/j.mssp.2015.06.050.
[10] A. Okada, T. Konishi, Y. Okamoto, and H. Kurihara, “Wire breakage and deflection caused by nozzle jet flushing in wire EDM,” CIRP Annals, vol. 64, no. 1, pp. 233–236, Jan. 2015, doi: 10.1016/j.cirp.2015.04.034.
[11] H. Ding, Z. Liu, M. Qiu, H. Chen, Z. Tian, and L. Shen, “Study of multi-cutting by WEDM for specific crystallographic planes of monocrystalline silicon,” The International Journal of Advanced Manufacturing Technology, Sep. 2015, doi: 10.1007/s00170-015-7784-9.
[12] K. Joshi, A. Ananya, U. Bhandarkar, and S. S. Joshi, “Ultra thin silicon wafer slicing using wire-EDM for solar cell application,” Materials & Design, vol. 124, pp. 158–170, Jun. 2017, doi: 10.1016/j.matdes.2017.03.059.
[13] M. A. Singh, K. Joshi, O. Hanzel, R. Singh, P. Sajgalik, and D. Marla, “Influence of open voltage and servo voltage during Wire-EDM of silicon carbides,” Procedia CIRP, vol. 95, pp. 285–289, Jan. 2020, doi: 10.1016/j.procir.2020.02.305.
[14] T. Bergs, M. Olivier, T. Herrig, and A. Klink, “Experimental Analysis on Wire Electrical Discharge Machinability of Electrically Conductive Silicon Carbide and Nitride as Function of Different Oil-Based Dielectrics,” Procedia CIRP, vol. 95, pp. 290–295, Jan. 2020, doi: 10.1016/j.procir.2020.01.165.
[15] M. A. Singh, K. Joshi, O. Hanzel, R. K. Singh, P. ?ajgalik, and D. Marla, “Identification of wire electrical discharge machinability of SiC sintered using rapid hot pressing technique,” Ceramics International, vol. 46, no. 11, Part A, pp. 17261–17271, Aug. 2020, doi: 10.1016/j.ceramint.2020.04.013.
[16] J. Wang, J. A. Sanchez, Z. Wang, B. Izquierdo, and I. Ayesta, “ ,” Procedia CIRP, vol. 95, pp. 331–336, Jan. 2020, doi: 10.1016/j.procir.2020.02.323.
[17] A. S. Verma and S. Singh, “Experimental investigation and prediction modelling of slicing speed and surface roughness during wafer slicing using WEDM,” Engineering Research Express, vol. 4, no. 3, p. 035028, Aug. 2022, doi: 10.1088/2631-8695/ac852a.
[18] S. Kimura, H. Iwai, S. Liu, A. Okada, and H. Kurihara, “Influence of Nozzle Jet Flushing in Wire EDM of Workpiece with Stepped Thickness,” Procedia CIRP, vol. 113, pp. 149–154, Jan. 2022, doi: 10.1016/j.procir.2022.09.123.
[19] P. Rana, D. Bhartiya, and D. Marla, “Modeling of thermal damage and residual stress in slicing of silicon wafers using wire-electrical discharge machining: Comparison with experiments - ScienceDirect,” Journal of Manufacturing Processes, vol. 85, pp. 69–79, 2023, doi: https://doi.org/10.1016/j.jmapro.2022.10.079.
[20] 倉藤尚雄、鳳誠三郎著,《放電加工》, 鄒大鈞譯,復漢出版社,民國八十八年。
[21] 簡綱佑,<超音波振動輔助線切割放電及電解加工多晶矽材料之研究>,” 碩士論文,國立中央大學,民國九十九年。
[22] 李世璋,<高功率超音波振動輔助線切割放電加工SKD61材料之研究>,碩士論文,國立中央大學,民國一百一十年。
[23] 李輝煌著,《田口方法品質設計的原理與實務》,第四版,高立圖書有限公司,民國一百年。
[24] C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd ed. Boca Raton: CRC Press, 2011. doi: 10.1201/b11103.
指導教授 洪榮洲(Jung-Chou Hung) 審核日期 2025-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明