博碩士論文 111323048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.12.162.40
姓名 林星宇(Hsing-Yu Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 各種參數對A356低壓鑄造 薄板鑄件的流動性研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-31以後開放)
摘要(中) 本研究以A356(Al-Si-Mg)之鋁合金進行不同厚度鑄件低壓鑄造實驗,實驗目的為經由本實驗探索不同厚度之試片鋁合金於實務鑄造上的流動填充與氧化膜生成的條件與方式,透過調整鑄造參數如低壓鑄造壓力、加壓時間、模具預熱溫度等來探討填充流動波前問題,並輔以MAGMA5.5模擬軟體互相驗證分析。

實驗得知鑄件試片越厚,其機械性質較佳,原因為保壓時間與壓力充足得到完整的填充與樹狀晶枝狀間距得到補充。相對來說厚度2.8 mm的板件會因鋁湯充模時壓力過大導致尾端鋁湯流動不穩定介面撞擊模壁造成浪捲、捲氣,將其帶進鋁液內部並向中間段補充,導致過多的氧化膜在試棒中間段產生使得機械性質不佳。

1.低壓鑄造鋁合金薄板厚度2.8mm的板件在浪捲與噴濺的比例是左側大於右側,容易在入模口處形成了捲氣,並隨著熔融鋁合金的補充推進,使得此捲氣泡流經整個試片,機械性質左小於右。
2.低壓鑄造鋁合金薄板厚度3.2mm的板件在捲氣、浪捲與噴濺的比例都是左側大於右側,捲氣為入模流速過快導致波前與實際補充流動產生,機械性質左小於右。
3.低壓鑄造鋁合金薄板厚度4.5mm的板件在捲氣與噴濺的比例是右側大於左側,浪捲雖然左側較大於右側,但是並不存在明顯的差異,機械性質左大於右。
4.低壓鑄造鋁合金薄板厚度6.5mm的板件在捲氣、浪捲與噴濺的比例皆是右側大於左側,因為其厚度較大,其在內側時補充時的速度也較慢與穩定,但在外側時也會賦予他更多的空間浪捲,機械性質左大於右。

在填充過程中,位在外側的板件入模速度大於位在內側的板件,入模速度影響了鋁湯充模噴濺的比例,噴濺屬於極為不穩定的液面流動,很容易波前先行通過卻並未完整填充,導致熔融鋁合金中間產生捲氣,或是過快的流至試片尾端回流,產生大量的捲氣,使得介在物與氧化模的比例大增。
摘要(英) This study investigates low-pressure casting experiments of A356 (Al-Si-Mg) aluminum alloy castings with varying thicknesses. The objective is to explore the flow filling and oxide film formation conditions and mechanisms in practical casting applications. By adjusting casting parameters such as low-pressure casting pressure, pressurization time, and mold preheating temperature, the study examines the issues of filling flow fronts. The findings are validated and analyzed using MAGMA 5.5 simulation software.

The experiments reveal that thicker castings exhibit better mechanical properties due to adequate holding pressure and complete filling, which provide sufficient dendritic arm spacing compensation. In contrast, 2.8 mm thick plates experience unstable flow at the tail end of the aluminum melt due to excessive pressure during mold filling, causing wave entrainment and air entrapment. This results in air and oxide film accumulation in the midsection of the test specimen, leading to poorer mechanical properties. Key findings are summarized as follows:

For 2.8 mm thick aluminum alloy plates in low-pressure casting, the proportion of wave entrainment and splashing is higher on the left side than on the right. Air entrapment forms at the mold entrance and propagates through the entire specimen, reducing mechanical properties on the left side compared to the right.
For 3.2 mm thick plates, wave entrainment, air entrapment, and splashing are all more pronounced on the left side than on the right. Air entrapment occurs due to excessive inlet flow speed, leading to flow front instability. Mechanical properties on the left side are inferior to those on the right.
For 4.5 mm thick plates, the proportion of air entrapment and splashing is higher on the right side than on the left. Although wave entrainment is slightly greater on the left, the difference is not significant. Mechanical properties on the left side surpass those on the right.
For 6.5 mm thick plates, the proportion of air entrapment, wave entrainment, and splashing is higher on the right side than on the left. Due to greater thickness, the internal filling process is slower and more stable, while the outer side provides more space for wave entrainment. Mechanical properties on the left side exceed those on the right.
During the filling process, plates located on the outer side exhibit higher inlet flow speeds than those on the inner side. The inlet speed affects the splashing ratio during mold filling. Splashing is highly unstable and often results in incomplete filling, causing air entrapment in the molten aluminum or rapid backflow to the tail end of the specimen, leading to significant air entrapment and increased oxide film and inclusion proportions.
Keywords: A356 aluminum alloy, low-pressure casting, oxide film, numerical simulation, mechanical properties



The experiments reveal that thicker cast specimens exhibit better mechanical properties due to sufficient holding pressure and time, which ensure complete filling and refinement of dendritic arm spacing. Conversely, for 2.8 mm thick plates, excessive pressure during mold filling causes unstable flow at the rear end of the aluminum liquid, resulting in wall impact, turbulence, and entrainment of air into the molten aluminum. This leads to the formation of excessive oxide films in the central section of the specimens, adversely affecting their mechanical properties.

For 2.8 mm thick plates in low-pressure casting:

The proportions of turbulence and splashing are greater on the left side than on the right.
Air entrainment forms at the mold entry point and propagates throughout the specimen with the molten aluminum′s flow, causing the left side to exhibit inferior mechanical properties compared to the right.
For 3.2 mm thick plates in low-pressure casting:

The proportions of air entrainment, turbulence, and splashing are also greater on the left side than on the right.
Air entrainment results from excessive flow speed at the mold entry, leading to instability in the flow front, causing the left side′s mechanical properties to be inferior to the right.
For 4.5 mm thick plates in low-pressure casting:

Air entrainment and splashing proportions are greater on the right side than on the left.
Although turbulence is slightly higher on the left side, the difference is not significant, and the left side exhibits superior mechanical properties compared to the right.
For 6.5 mm thick plates in low-pressure casting:

The proportions of air entrainment, turbulence, and splashing are all higher on the right side than on the left.
Due to the greater thickness, the flow speed during inner filling is slower and more stable, while the outer region experiences more turbulence due to the increased space, resulting in the left side having better mechanical properties than the right.
During the filling process, the outer plates have a higher mold entry speed than the inner plates. This entry speed influences the proportion of splashing during mold filling. Splashing is a highly unstable surface flow phenomenon, where the flow front may advance without complete filling, leading to air entrainment in the molten aluminum or backflow at the specimen′s rear end. This generates a large amount of air entrainment, significantly increasing the proportion of inclusions and oxide films.
關鍵字(中) ★ A356鋁合金
★ 低壓鑄造
★ 氧化膜
★ 數值模擬
★ 機械性質
關鍵字(英) ★ A356 aluminum
★ low pressure die casting
★ oxide film
★ Numerical simulation
★ mechanical properties
論文目次 目錄
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究方法 1
第二章 文獻探討 2
2.1 低壓鑄造製程介紹 2
2.2 鋁合金熔解的除渣/除氣介紹 3
2.2.1 鋁合金除渣助熔劑 3
2.2.2 鋁合金除氣技術 4
2.2.3 對鋁合金鑄件品質/性質影響 4
2.3 低壓鑄造製程參數對鋁鑄件品質/性質影響 5
2.4 鋁鑄件氧化膜的形成 7
2.5 鋁鑄件氧化膜的診斷 9
2.6 鋁鑄件氧化膜對鋁鑄件性質/品質的影響 10
2.7 鋁鑄件鑄造數值模擬 10
第三章 理論與模擬 12
3.1 模具設計 12
3.2 鑄件設計 13
3.3 模擬條件設定 13
3.4 模擬結果 15
3.4.1 鋁合金充填的過程模擬 15
3.4.2 鋁合金充填波前的定義 18
3.4.3 鋁合金充填波前的模擬結果 20
第四章 實驗方法與步驟 23
4.1 實驗材料準備 23
4.2 模具準備 26
4.3 鑄造壓力設定與計算 26
4.4 鑄件外觀檢查 29
4.5 鑄件微觀分析 29
4.6 鑄件機械性質 30
第五章 結果與討論 32
5.1 冷激塊分析 32
5.2 模流分析 32
5.3 不同模次機械性質分析 34
5.4 不同模溫機械性質分析 35
5.5 不同初始壓力機械性質分析 36
5.6 厚度對機械性質影響 37
5.7 各鑄件厚度氧化膜比例分析 39
5.8 模具方案二結果與討論 42
第六章 結論 56
參考文獻 57
附錄 59
附錄一 模具方案一300℃模擬填充過程filling 0-100% 59
附錄二 模具方案一400℃模擬填充過程filling 0-100% 65
附錄三 11號模厚度2.8mm距離入模口0~150mm氧化膜的面積比例 71
附錄四 11號模厚度6.5mm距離入模口0~150mm氧化膜的面積比例 73
附錄五 23號模厚度6.5mm距離入模口0~150mm氧化膜的面積比例 75
參考文獻 [1]https://kknews.cc/news/v65p48l.html. In.
[2]https://www.corrdata.org.cn/news/industry/2017-04-12/165323.html.
[3]Wang, P.-W. (2001). 除氣與除渣處理對於鋁合金品質的影響 National Central University].
[4]Crepeau, P. N. (1997). Molten aluminium contamination: Gas, inclusions and dross. Modern casting, 87(7), 39-41.
[5]Ye, J., & Sahai, Y. (1996). Interfacial behavior and coalescence of aluminum drops in molten salts. Materials Transactions, JIM, 37(2), 175-180.
[6]Roy, R. R., & Sahai, Y. (1997). Coalescence behavior of aluminum alloy drops in molten salts. Materials Transactions, JIM, 38(11), 995-1003.
[7]Cochran, B., Fenyes, M., Jeanneret, J., Mulae, R., & Crepeau, P. (1992). Flux practice in aluminum melting. AFS Transactions, 88, 737-742.
[8]http://alupure.com/gas_show-122.html.
[9]Huang, L.-W., Wang, P.-W., Shih, T.-S., & Liou, J.-H. (2002). Effect of degassing treatment on the quality of Al-7Si and A356 melts. Materials Transactions, 43(11), 2913-2920.
[10]Van Der Graaf, G., Van Den Akker, H., & Katgerman, L. (2001). A computational and experimental study on mold filling. Metallurgical and Materials Transactions B, 32, 69-78.
[11]Baum, M., Jasser, F., Stricker, M., Anders, D., & Lake, S. (2022). Numerical simulation of the mold filling process and its experimental validation. The International Journal of Advanced Manufacturing Technology, 120(5), 3065-3076.
[12]Park, J. M. (2010). Behaviours of bifilms in A356 alloy during solidification: developing observation techniques with 3-D micro x-ray tomography University of Birmingham].
[13]Liu, J., Wang, Q., & Qi, Y. (2019). Atomistic simulation of the formation and fracture of oxide bifilms in cast aluminum. Acta Materialia, 164, 673-682.
[14]Wang, Q., Crepeau, P., Davidson, C., & Griffiths, J. (2006). Oxide films, pores and the fatigue lives of cast aluminum alloys. Metallurgical and Materials Transactions B, 37, 887-895.
[15]Campbell, J. (2003). Castings. Elsevier.
[16]Tezer, F., Gursoy, O., Erzi, E., Zora?a, M., & D??p?nar, D. (2019). Determination of Liquid Metal Quality with Deep Etching Method. Shape Casting: 7th International Symposium Celebrating Prof. John Campbell′s 80th Birthday,
[17]Campbell, J. (2006). Entrainment defects. Materials science and technology, 22(2), 127-145.
[18]黃儒祥, & 許富淵. (2020). 回收鋁中氧化物雜質在保溫爐內沉澱現象之模擬及驗證. 鑄造工程學刊, 46(1), 25-40.
[19]Divandari, M., & Campbell, J. (2001). Mechanisms of bubble trail formation in castings. Trans. AFS, 109, 433-442.
[20]Shih, T.-S., Chen, P.-C., & Huang, Y.-S. (2011). Effects of the hydrogen content on the development of anodic aluminum oxide film on pure aluminum. Thin Solid Films, 519(22), 7817-7825.
[21]Chen, Y.-J., Huang, L.-W., & Shih, T.-S. (2003). Marking oxide films on the section of Al-XSi alloys by ultrasonic-vibration treatment. Materials Transactions, 44(6), 1190-1197.
[22]Huang, L.-W. (2003). 製程參數對鑄造鋁合金品質影響之研究 National Central University].
[23]李?栻. (2008). 金?液面氧化膜??合金?件?量的影?. 金?加工: ?加工(9), 56-58.
[24]Smith, T. (1966). Kinetics and mechanism of hydrogen permeation of oxide films on zirconium. Journal of Nuclear Materials, 18(3), 323-336.
[25]黃文星. (2000). 低壓鑄造製程灌模及凝固數值模擬系統之研發與實驗驗證 (3/3).
[26]Merlin, M., Timelli, G., Bonollo, F., & Garagnani, G. L. (2009). Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology, 209(2), 1060-1073.
[27]Bahmani, A., Hatami, N., Varahram, N., Davami, P., & Shabani, M. O. (2013). A mathematical model for prediction of microporosity in aluminum alloy A356. The International Journal of Advanced Manufacturing Technology, 64, 1313-1321.
[28]Yang, X., Din, T., & Campbell, J. (1998). Liquid metal flow in moulds with off-set sprue. International Journal of Cast Metals Research, 11(1), 1-12.
[29]D’Elia, F., Ravindran, C., Sediako, D., Kainer, K., & Hort, N. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design, 64, 44-55.
[30]孔令超. (2015). ?合金低??造?程的模?. ?造技?, 36(6), 1513-1517.
[31]Argo, D., & Gruzleski, J. (1988). Porosity in modified aluminum alloy castings. AFS Transactions, 96(1), 65-74.
[32]Sigworth, G. (1987). A scientific basis for degassing aluminum. AFS Transactions, 95, 73-78.
[33]https://www.zwickroell.com/tw/industries/metals/metals-standards/metals-tensile-test-astm-e8/
指導教授 施登士(Teng-Shih Shih) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明