博碩士論文 111326026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.12.164.78
姓名 陳亮諭(Liang-Yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以微波技術提升電爐石中鈣離子萃取及二氧化碳碳酸化之可行性研究
(Feasibility Study on Enhancing Calcium Extraction Efficiency from Electric Arc Furnace Slag By Using Microwave Technology and Carbon Dioxide Carbonation)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例★ 應用錳改質牡蠣殼對污染土壤中鎘及鉛移動性與植物累積之影響評估
★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查
★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究★ 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-11-28以後開放)
摘要(中) 氣候變遷儼然已經成為全球迫切的議題,有許多證據顯示工業發展和人類活動的增加,導致溫室氣體排放量迅速上升,尤其是二氧化碳的增加,會對環境造成負面影響,因此,減緩溫室氣體排放,以避免氣候變遷狀況加劇是必要的。台灣日前正式發布《台灣2050淨零排放路徑藍圖》,旨在實現2050年淨零排放目標和行動計畫。碳捕獲、利用和儲存(Carbon capture, utilization, and storage, CCUS, CCUS)技術被認為是最有前景的碳減排策略,將二氧化碳捕捉和儲存到礦物、地層或海洋中是最有效和可行的方法。本研究利用電爐石作為萃取Ca之原料,電爐石的鈣含量相當豐富,可以與二氧化碳反應形成碳酸鈣沉澱,沉澱後的碳酸鈣還可應用在建築材料等其他再利用方式,達成循環經濟和環境永續的概念,利用氯化銨對Ca高選擇性之特性作為萃取劑,來提升Ca的萃取效果,此外,本研究創新將微波技術運用在Ca的萃取,微波技術可以在反應過程中增強Ca的溶出,以及加快反應速率,對於整體實驗的效能大幅度增加。萃取實驗探討不同反應時間、粒徑大小、氯化銨濃度及液固比四項參數,對鈣、鎂及Si萃取濃度之影響。結果顯示,隨著反應時間增加,鈣與Mg的萃取濃度上升,但Si在反應過程不斷受熱形成矽膠,使Si萃取濃度降低。電爐石粒徑越小,比表面積越大,萃取效果越好。氯化銨濃度越高,可以促進鈣與Mg的溶出,由於使用氯化銨作為萃取劑,針對Ca的選擇性較良好,因此,相同條件下,Mg的萃取濃度小於Ca,但Si卻得到相反的結果,由於高濃度的氯化銨會優先和電爐石中Ca結合,抑制Si的溶出。液固比越小,有助於提高鈣、鎂及Si的萃取濃度。最佳萃取條件為反應10分鐘、電爐石粒徑?74 μm、氯化銨濃度 2 M、液固比5:1,可得到萃取液 Ca: 52000 ± 563 mg/L、Mg: 1100 ± 4.3 mg/L、Si:64.8 ± 8.4 mg/L。在碳酸化反應試驗中,主要探討反應時間、反應溫度及pH值對碳酸化效率的影響,結果顯示,隨著反應時間和溫度的增加,碳酸化效率僅有些微的提升,而pH值才是影響碳酸化效率的關鍵,在高pH值的作用下,輕質碳酸鈣(Precipitated Calcium Carbonate, PCC)沉澱量大幅提升,可以成功碳酸化84.1 ± 0.59 g CO2/kg slag,為了證實沉澱碳酸鈣的性質,本研究利用XRD及SEM進行分析,發現在25℃下沉澱的碳酸鈣為球霰石結晶型態,在60℃下沉澱的碳酸鈣則為方解石結晶型態。使用微波加熱設備,碳排放量僅有0.066 kg CO2e,證實微波加熱不僅可以縮短反應時間,並提高萃取濃度,節省更多能源。
摘要(英) Climate change has clearly become an urgent global issue. There is substantial evidence showing that the rapid rise in greenhouse gas emissions, especially carbon dioxide, is primarily caused by industrial development and increased human activities, leading to negative environmental impacts. Therefore, reducing greenhouse gas emissions is essential to prevent the worsening of climate change. Recently, Taiwan officially released the "Taiwan 2050 Net-Zero Emissions Pathway Blueprint," aiming to achieve the goal of net-zero emissions by 2050. Carbon capture, utilization, and storage (CCUS) technology is considered the most promising carbon reduction strategy. Capturing and storing carbon dioxide in minerals, geological formations, or oceans is seen as the most effective and feasible method.
In this study, electric arc furnace slag was used as the material for calcium ion extraction, as it contains a high amount of calcium, which can react with carbon dioxide to form carbonate precipitates. These carbonates can be reused in construction materials, promoting the concepts of circular economy and environmental sustainability. Ammonium chloride was employed as the extracting agent due to its high selectivity for calcium ions, enhancing the extraction efficiency. Moreover, microwave technology was used to accelerate the dissolution of calcium ions and speed up the reaction, significantly improving the overall experiment′s efficiency.
The extraction experiments examined the effects of four parameters—reaction time, particle size, ammonium chloride concentration, and liquid-to-solid ratio—on the extraction of calcium, magnesium, and silicon ions. The results showed that as the reaction time increased, the extraction concentrations of calcium and magnesium ions rose, while silicon ions formed silica gel due to prolonged heating, resulting in a decrease in their concentration. Smaller particle sizes with larger surface areas improved the extraction efficiency. Higher ammonium chloride concentrations promoted the dissolution of calcium and magnesium ions. Since ammonium chloride is more selective for calcium ions, the magnesium ion concentration was lower under the same conditions. However, silicon ions exhibited the opposite trend because high concentrations of ammonium chloride prioritized the binding with calcium ions in the slag, inhibiting the dissolution of silicon ions. A lower liquid-to-solid ratio also helped increase the extraction concentrations of calcium, magnesium, and silicon ions. The optimal extraction conditions were a reaction time of 10 minutes, particle size ? 74 μm, ammonium chloride concentration of 2 M, and a liquid-to-solid ratio of 5:1 (calcium ions: 52,000 ± 563 mg/L; magnesium ions: 1,100 ± 4.3 mg/L; silicon ions: 64.8 ± 8.4 mg/L).
In the carbonation reaction tests, the effects of reaction time, temperature, and pH on carbonation efficiency were examined. The results indicated that increasing reaction time and temperature only slightly improved carbonation efficiency, whereas pH was the critical factor. At higher pH levels, the amount of calcium carbonate precipitated increased significantly, successfully carbonating 84.1 ± 0.59 g CO2 per kg of slag. To confirm the properties of the precipitated calcium carbonate, XRD and SEM analyses were conducted, showing that the calcium carbonate precipitated at 25°C formed as vaterite crystals, while at 60°C, it formed as calcite crystals. Using microwave heating equipment results in carbon emissions of only 0.066 kg CO2e, demonstrating that microwave heating not only shortens reaction time and increases extraction concentration but also saves more energy.
關鍵字(中) ★ CCUS
★ 電爐石
★ 微波萃取
★ 氯化銨
★ 碳酸化
★ 輕質碳酸鈣
關鍵字(英) ★ CCUS
★ EAF
★ Microwaves Extracting
★ Ammonium Chloride
★ Carbonation
★ PCC
論文目次 誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 X
表目錄 XIV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 二氧化碳 4
2.1.1 二氧化碳特性來源 4
2.1.2 二氧化碳之環境影響 4
2.1.3 碳排放 5
2.2 二氧化碳捕捉與封存之技術 7
2.2.1 碳捕捉 7
2.2.2 碳封存 9
2.3 二氧化碳吸附劑 12
2.3.1 煉鋼爐石 12
2.3.2 沸石 14
2.3.3 氧化鈣 14
2.3.4 活性碳 14
2.4 碳酸化法 16
2.4.1 直接碳酸化 17
2.4.2 間接碳酸化 17
2.5 萃取劑 19
2.5.1 酸性萃取劑 19
2.5.2 氯化銨 19
2.6 碳酸化反應影響因子 21
2.6.1 反應時間 21
2.6.2 反應溫度 21
2.6.3 粒徑大小 23
2.6.4 液固比 23
2.6.5 二氧化碳濃度 23
2.6.6 二氧化碳壓力 24
2.6.7 pH 24
2.7 微波反應 26
2.7.1 微波介紹 26
2.7.2 微波應用 26
2.8 輕質碳酸鈣 28
第三章 實驗方法與步驟 29
3.1 研究方法及流程 29
3.2 電爐石之萃取試驗 32
3.2.1 樣品前處理 32
3.2.2 萃取實驗 32
3.3 二氧化碳碳酸化實驗 35
3.4 儀器分析 38
3.4.1 感應耦合電漿光學發射光譜儀 38
3.4.2 掃描式電子顯微鏡 38
3.4.3 X光繞射儀 39
3.4.4 比表面積分析儀 39
3.5 實驗材料與藥品 40
3.6 儀器設備 41
第四章 結果與討論 42
4.1 電爐石物化特性 42
4.1.1 電爐石成分分析 42
4.1.2 XRD分析 44
4.1.3 SEM分析 45
4.1.4 BET分析 48
4.2 萃取實驗結果 49
4.2.1 微波輔助萃取 49
4.2.2 反應時間 54
4.2.2.1 對鈣濃度之影響 54
4.2.2.2 對鎂濃度之影響 56
4.2.2.3 對矽濃度之影響 58
4.2.3 粒徑大小 60
4.2.3.1 對鈣濃度之影響 60
4.2.3.2 對鎂濃度之影響 63
4.2.3.3 對矽濃度之影響 66
4.2.4 氯化銨濃度 69
4.2.4.1 對鈣濃度之影響 69
4.2.4.2 對鎂濃度之影響 72
4.2.4.3 對矽濃度之影響 75
4.2.5 液固比 78
4.2.5.1 對鈣濃度之影響 78
4.2.5.2 對鎂濃度之影響 85
4.2.5.3 對矽濃度之影響 88
4.3 碳酸化實驗結果 91
4.3.1 反應時間 91
4.3.2 反應溫度 93
4.3.3 pH值 95
4.4 輕質碳酸鈣 (Precipitated calcium carbonate, PCC)特性 98
4.4.1 XRD分析 98
4.4.2 SEM分析 100
4.5 能源消耗分析 101
第五章 結論與建議 103
5.1 結論 103
5.2 建議 105
參考文獻 106
附錄 115
參考文獻 1. Bui, M., C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, and N. Mac Dowell, Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 2018. 11(5): p. 1062-1176.
2. Shu, D.Y., S. Deutz, B.A. Winter, N. Baumgartner, L. Leenders, and A. Bardow, The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. Renewable and Sustainable Energy Reviews, 2023. 178: p. 113246.
3. Mun, M. and H. Cho, Mineral Carbonation for Carbon Sequestration with Industrial Waste. Energy Procedia, 2013. 37: p. 6999-7005.
4. 環境部, 2023年中華民國國家溫室氣體排放清冊報告. 2023.
5. Feng, D. and A. Hicks, Environmental, human health, and CO2 payback estimation and comparison of enhanced weathering for carbon capture using wollastonite. Journal of Cleaner Production, 2023. 414: p. 137625.
6. Jebabli, I., A. Lahiani, and S. Mefteh-Wali, Quantile connectedness between CO2 emissions and economic growth in G7 countries. Resources Policy, 2023. 81: p. 103348.
7. Lau, L.C., K.T. Lee, and A.R. Mohamed, Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment. Renewable and Sustainable Energy Reviews, 2012. 16(7): p. 5280-5284.
8. Bauer, A. and K. Menrad, Standing up for the Paris Agreement: Do global climate targets influence individuals’ greenhouse gas emissions? Environmental Science & Policy, 2019. 99: p. 72-79.
9. Sun, R.-S., X. Gao, L.-C. Deng, and C. Wang, Is the Paris rulebook sufficient for effective implementation of Paris Agreement? Advances in Climate Change Research, 2022. 13(4): p. 600-611.
10. 經濟部能源局, 111年度我國燃料燃燒之二氧化碳排放統計與分析. 2022.
11. 工業技術研究院, 國際能源總署(IEA)2022年碳排回顧報告. 2023.
12. Davoodi, S., M. Al-Shargabi, D.A. Wood, V.S. Rukavishnikov, and K.M. Minaev, Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Science and Engineering, 2023. 117: p. 205070.
13. Sharma, N. and S.S. Mahapatra, A preliminary analysis of increase in water use with carbon capture and storage for Indian coal-fired power plants. Environmental Technology & Innovation, 2018. 9: p. 51-62.
14. Tan, W.-L., A.L. Ahmad, C.P. Leo, and S.S. Lam, A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. Journal of CO2 Utilization, 2020. 42: p. 101333.
15. 郭竹婷, 改質轉爐石捕捉二氧化碳之研究, in 地球科學系碩博士班. 2012, 國立成功大學: 台南市. p. 125.
16. 張晏齊, 二氧化碳在混和溶劑(DETA)與(PZ)水溶液之氣液平衡量測研究, in 化學工程研究所. 2012, 中原大學: 桃園縣. p. 77.
17. Gowd, S.C., P. Ganeshan, V.S. Vigneswaran, M.S. Hossain, D. Kumar, K. Rajendran, H.H. Ngo, and A. Pugazhendhi, Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development. Science of The Total Environment, 2023. 883: p. 163656.
18. 許振譽, 台灣燃煤電廠二氧化碳捕捉及封存之成本效益分析, in 資源工程學系. 2014, 國立成功大學: 台南市. p. 66.
19. 蔡枚吟, 設計和製備新型微孔材料應用於二氧化碳捕捉和碘吸附, in 材料與光電科學學系研究所. 2020, 國立中山大學: 高雄市. p. 76.
20. 陳崇和, 高濃度醇胺於超重力旋轉床吸收CO2之應用, in 化學工程學系. 2012, 國立清華大學: 新竹市. p. 76.
21. 林于萱, 改質層狀雙氫氧化物應用於二氧化碳吸附, in 環境工程學系碩士班. 2021, 國立宜蘭大學: 宜蘭縣. p. 121.
22. 廖平浩, 純氧燃燒中以爐石在高溫下去除二氧化碳之研究, in 環境工程學系碩博士班. 2012, 國立成功大學: 台南市. p. 129.
23. Holloway, S., J.M. Pearce, V.L. Hards, T. Ohsumi, and J. Gale, Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007. 32(7): p. 1194-1201.
24. Stenhouse, M.J., J. Gale, and W. Zhou, Current status of risk assessment and regulatory frameworks for geological CO2 storage. Energy Procedia, 2009. 1(1): p. 2455-2462.
25. Maul, P.R., R. Metcalfe, J. Pearce, D. Savage, and J.M. West, Performance assessments for the geological storage of carbon dioxide: Learning from the radioactive waste disposal experience. International Journal of Greenhouse Gas Control, 2007. 1(4): p. 444-455.
26. Neeraj and S. Yadav, Carbon storage by mineral carbonation and industrial applications of CO2. Materials Science for Energy Technologies, 2020. 3: p. 494-500.
27. Bachu, S., Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 2015. 40: p. 188-202.
28. Qin, J., Q. Zhong, Y. Tang, Z. Rui, S. Qiu, and H. Chen, CO2 storage potential assessment of offshore saline aquifers in China. Fuel, 2023. 341: p. 127681.
29. Adams, E.E., D.S. Golomb, and H.J. Herzog, Ocean disposal of CO2 at intermediate depths. Energy Conversion and Management, 1995. 36(6): p. 447-452.
30. de Figueiredo, M.A., D.M. Reiner, and H.J. Herzog, - Ocean Carbon Sequestration: A Case Study in Public and Institutional Perceptions, in Greenhouse Gas Control Technologies - 6th International Conference, J. Gale and Y. Kaya, Editors. 2003, Pergamon: Oxford. p. 799-804.
31. 吳柏諭, 我國二氧化碳地質封存之研究-以二氧化碳定性及封存土地為中心, in 法律學研究所. 2015, 國立中正大學: 嘉義縣. p. 151.
32. 李幸宜, 微藻變身生質金礦, in 工業技術與資訊月刊. 2019.
33. Ma, M., H. Mehdizadeh, M.-Z. Guo, and T.-C. Ling, Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Construction and Building Materials, 2021. 304: p. 124628.
34. Ren, S., T. Aldahri, W. Liu, and B. Liang, CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments. Energy, 2021. 214: p. 118975.
35. 許伯良, 林平全, and 徐登科. 轉爐石產製與工程應用. 2011.
36. Kim, J. and G. Azimi, The CO2 sequestration by supercritical carbonation of electric arc furnace slag. Journal of CO2 Utilization, 2021. 52: p. 101667.
37. 陳立, 電弧爐氧化碴為混凝土骨材之可行性研究, in 土木工程研究所. 2003, 國立中央大學: 桃園縣. p. 303.
38. 中聯資源股份有限公司. 各種爐石成分比較表. [Internet]; Available from: https://www.chc.com.tw/pe_p2.html.
39. Chen, C., J. Yu, G. Song, and K. Che, Desorption performance of commercial zeolites for temperature-swing CO2 capture. Journal of Environmental Chemical Engineering, 2023. 11(3): p. 110253.
40. 陶以瑄, 金屬改質沸石與奈米鈦管對低濃度二氧化碳吸附/脫附效能研究, in 環境工程系所. 2013, 國立交通大學: 新竹市. p. 118.
41. Broda, M., A.M. Kierzkowska, and C.R. Muller, Influence of the Calcination and Carbonation Conditions on the CO2 Uptake of Synthetic Ca-Based CO2 Sorbents. Environmental Science & Technology, 2012. 46(19): p. 10849-10856.
42. Hsieh, S.-L., F.-Y. Li, P.-Y. Lin, D.E. Beck, R. Kirankumar, G.-J. Wang, and S. Hsieh, CaO recovered from eggshell waste as a potential adsorbent for greenhouse gas CO2. Journal of Environmental Management, 2021. 297: p. 113430.
43. Wang, T., D.-C. Xiao, C.-H. Huang, Y.-K. Hsieh, C.-S. Tan, and C.-F. Wang, CO2 uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds. Journal of Hazardous Materials, 2014. 270: p. 92-101.
44. 吳宗欣, 釩/銅金屬活性碳觸媒氮氧化物還原活性之探討, in 環境工程與科學系暨研究所. 2011, 嘉南藥理科技大學: 台南市. p. 172.
45. 葉育宸, 藉由活性碳表面進行氨化處理以提升二氧化碳, in 環境與安全衛生工程系環境工程碩士班. 2016, 明志科技大學: 新北市. p. 85.
46. Sirinwaranon, P., V. Sricharoenchaikul, S. Vichaphund, K. Soongprasit, M. Rodchom, P. Wimuktiwan, and D. Atong, Synthesis and characterization of the porous activated carbon from end-of-life tire pyrolysis for CO2 sequestration. Journal of Analytical and Applied Pyrolysis, 2023. 174: p. 106139.
47. Sun, J., M.F. Bertos, and S.J.R. Simons, Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & Environmental Science, 2008. 1(3): p. 370-377.
48. Azdarpour, A., M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, and M.A. Karaei, A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 2015. 279: p. 615-630.
49. Myers, C.A., T. Nakagaki, and K. Akutsu, Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas. International Journal of Greenhouse Gas Control, 2019. 87: p. 100-111.
50. Winnefeld, F., A. Leemann, A. German, and B. Lothenbach, CO2 storage in cement and concrete by mineral carbonation. Current Opinion in Green and Sustainable Chemistry, 2022. 38: p. 100672.
51. 簡芳瑜, 以三相碳酸化系統探討還原碴封存二氧化碳 之研究, in 環境工程研究所. 2016, 國立中央大學: 桃園縣. p. 139.
52. Chen, Z., Z. Cang, F. Yang, J. Zhang, and L. Zhang, Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review. Journal of CO2 Utilization, 2021. 54: p. 101738.
53. Wang, F., D. Dreisinger, M. Jarvis, and T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Minerals Engineering, 2019. 131: p. 185-197.
54. Liu, W., L. Teng, S. Rohani, Z. Qin, B. Zhao, C.C. Xu, S. Ren, Q. Liu, and B. Liang, CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chemical Engineering Journal, 2021. 416: p. 129093.
55. Zhao, Q., X. Chu, X. Mei, Q. Meng, J. Li, C. Liu, H. Saxen, and R. Zevenhoven, Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization. Front Chem, 2020. 8: p. 571504.
56. Yasipourtehrani, S., S. Tian, V. Strezov, T. Kan, and T. Evans, Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chemical Engineering Journal, 2020. 387.
57. Said, A., T. Laukkanen, and M. Jarvinen, Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Applied Energy, 2016. 177: p. 602-611.
58. Eloneva, S., S. Teir, J. Salminen, C.-J. Fogelholm, and R. Zevenhoven, Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate. Industrial & Engineering Chemistry Research, 2008. 47(18): p. 7104-7111.
59. Kodama, S., T. Nishimoto, N. Yamamoto, K. Yogo, and K. Yamada, Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy, 2008. 33(5): p. 776-784.
60. He, L., D. Yu, W. Lv, J. Wu, and M. Xu, A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash. Industrial & Engineering Chemistry Research, 2013. 52(43): p. 15138-15145.
61. Jiang, H., H. Guo, P. Li, Y. Li, and B. Yan, Preparation of CaMgAl-LDHs and mesoporous silica sorbents derived from blast furnace slag for CO2 capture. RSC Advances, 2019. 9(11): p. 6054-6063.
62. Mei, X., Q. Zhao, Y. Min, C. Liu, P. Shi, H. Saxen, and R. Zevenhoven, Dissolution behavior of steelmaking slag for Ca extraction toward CO2 sequestration. Journal of Environmental Chemical Engineering, 2023. 11(3): p. 110043.
63. Zhang, H.-n., A.-j. Xu, D.-f. He, and J. Cui, Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure. Journal of Central South University, 2013. 20(6): p. 1482-1489.
64. Owais, M., M. Jarvinen, P. Taskinen, and A. Said, Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. Journal of CO2 Utilization, 2019. 31: p. 1-7.
65. Lee, S., J.-W. Kim, S. Chae, J.-H. Bang, and S.-W. Lee, CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. Journal of CO2 Utilization, 2016. 16: p. 336-345.
66. Said, A., H.-P. Mattila, M. Jarvinen, and R. Zevenhoven, Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Applied Energy, 2013. 112: p. 765-771.
67. Bao, W., H. Li, and Y. Zhang, Selective Leaching of Steelmaking Slag for Indirect CO2 Mineral Sequestration. Industrial & Engineering Chemistry Research, 2010. 49(5): p. 2055-2063.
68. Zhang, Y., L. Yu, K. Cui, H. Wang, and T. Fu, Carbon capture and storage technology by steel-making slags: Recent progress and future challenges. Chemical Engineering Journal, 2023. 455.
69. Song, Q., M.-Z. Guo, L. Wang, and T.-C. Ling, Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resources, Conservation and Recycling, 2021. 173: p. 105740.
70. Lee, S.M., S.H. Lee, S.K. Jeong, M.H. Youn, D.D. Nguyen, S.W. Chang, and S.S. Kim, Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. Journal of Industrial and Engineering Chemistry, 2017. 53: p. 233-240.
71. Zhang, T., G. Chu, J. Lyu, Y. Cao, W. Xu, K. Ma, L. Song, H. Yue, and B. Liang, CO2 mineralization of carbide slag for the production of light calcium carbonates. Chinese Journal of Chemical Engineering, 2022. 43: p. 86-98.
72. Sun, Y., M.-S. Yao, J.-P. Zhang, and G. Yang, Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal, 2011. 173(2): p. 437-445.
73. Huang, X., J. Zhang, and L. Zhang, Accelerated carbonation of steel slag: A review of methods, mechanisms and influencing factors. Construction and Building Materials, 2024. 411: p. 134603.
74. Jo, H., M.-G. Lee, J. Park, and K.-D. Jung, Preparation of high-purity nano-CaCO3 from steel slag. Energy, 2017. 120: p. 884-894.
75. Nielsen, P., M.A. Boone, L. Horckmans, R. Snellings, and M. Quaghebeur, Accelerated carbonation of steel slag monoliths at low CO2 pressure – microstructure and strength development. Journal of CO2 Utilization, 2020. 36: p. 124-134.
76. Polettini, A., R. Pomi, and A. Stramazzo, CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. Journal of Environmental Management, 2016. 167: p. 185-195.
77. Pedersen, O., T. Colmer, and K. Sand-Jensen, Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods. Frontiers in Plant Science, 2013. 4: p. 140.
78. Chen, X., J. Yang, M. Shen, Y. Chen, Q. Yu, and J. Xie, Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science & Technology, 2022. 123: p. 198-209.
79. 謝佳琦, 微波誘導奈米銅/鐵雙金屬降解氯苯, in 環境與安全衛生工程所. 2008, 國立高雄第一科技大學: 高雄市. p. 86.
80. 邱耀賢, 以微波輔助頂空液相微萃取技術結合氣相層析質譜儀偵測柑橘中農藥之殘留, in 食品科技研究所. 2009, 中臺科技大學: 台中市. p. 95.
81. Rampal and S. Zafar, Effect of microwave power on the hole characteristics in microwave-drilled kenaf/polypropylene composites. Journal of Manufacturing Processes, 2023. 102: p. 218-230.
82. Virlley, S., S. Shukla, S. Arora, D. Shukla, D. Nagdiya, T. Bajaj, S. Kujur, Garima, A. Kumar, J.S. Bhatti, A. Singh, and C. Singh, Recent advances in microwave-assisted nanocarrier based drug delivery system: Trends and technologies. Journal of Drug Delivery Science and Technology, 2023. 87: p. 104842.
83. Kumar Baghel, P., Application of microwave in manufacturing technology: A review. Materials Today: Proceedings, 2023.
84. Liu, C., H. Liu, J. Long, B. Liao, X. Wang, Z. Sun, Y. Guo, and Z. Zheng, Interaction of dry and water-saturated uranium ore with microwave and enhanced extraction of uranium. Minerals Engineering, 2023. 196: p. 108047.
85. Kuo, C.-Y., C.-H. Wu, and S.-L. Lo, Removal of copper from industrial sludge by traditional and microwave acid extraction. Journal of Hazardous Materials, 2005. 120(1): p. 249-256.
86. Qin, N., Q. Min, M. Ma, and W. Hu, Progress in Extraction of Traditional Chinese Medicine Assisted with Microwave Irradiation. Journal of Microwave Chemistry 微波化?, 2018. 2(3): p. 79-84.
87. Mizuno, N., S. Kosai, and E. Yamasue, Microwave-based extractive metallurgy to obtain pure metals: A review. Cleaner Engineering and Technology, 2021. 5: p. 100306.
88. Vere?, J., M. Lovas, ?. Jakabsky, V. ?epelak, and S. Hredzak, Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy, 2012. 129-130: p. 67-73.
89. Perez-Cid, B., I. Lavilla, and C. Bendicho, Application of microwave extraction for partitioning of heavy metals in sewage sludge. Analytica Chimica Acta, 1999. 378(1): p. 201-210.
90. Jang, K., W.Y. Choi, I. Moulay, D. Lee, and J. Park, Strong acid-mediated Ca2+ extraction–CO2 mineralization process for CO2 absorption and nano-sized CaCO3 production from cement kiln dust: Simultaneous treatment of CO2 and alkaline wastewater. Journal of Environmental Chemical Engineering, 2024. 12(1): p. 111746.
91. Samanta, N.S., Anweshan, P. Mondal, U. Bora, and M.K. Purkait, Synthesis of precipitated calcium carbonate from LD-slag using CO2. Materials Today Communications, 2023. 36: p. 106588.
92. Pusparizkita, Y.M., W.W. Schmahl, M. Ambarita, H.N. Kholid, A.Y. Sadewa, R. Ismail, J. Jamari, and A.P. Bayuseno, Mineralizing CO2 and producing polymorphic calcium carbonates from bitumen-rock asphalt manufacturing solid residues. Cleaner Engineering and Technology, 2023. 12: p. 100602.
93. Yang, X., Y. Feng, X. Zhang, M. Sun, D. Qiao, J. Li, and X. Li, Mineral soil conditioner requirement and ability to adjust soil acidity. Scientific Reports, 2020. 10(1): p. 18207.
94. Song, X., Y. Cao, X. Bu, and X. Luo, Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process. Applied Surface Science, 2021. 536: p. 147958.
95. 楊剛庭, 連續萃取法對岩石二氧化碳地質封存潛勢評估初探, in 應用地球物理研究所. 2015, 國立中正大學: 嘉義縣. p. 80.
96. 林凱晨, ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究, in 化學系. 2015, 國立臺灣師範大學: 台北市. p. 115.
97. Tran, K.S., B. Shirinzadeh, A. Ehrampoosh, P. Zhao, and Y. Shi, Detection, Verification and Analysis of Micro Surface Defects in Steel Filament Using Eddy Current Principles, Scanning Electron Microscopy and Energy-Dispersive Spectroscopy. Sensors, 2023. 23(21): p. 8873.
98. Tummala, S.K., P.B. Bobba, and K. Satyanarayana, SEM & EDAX analysis of super capacitor. Advances in Materials and Processing Technologies, 2022. 8(sup4): p. 2398-2409.
99. 周紫慧, 製備二氧化鈦/石墨烯奈米材料處理草酸廢水之研究, in 環境工程學系所. 2024, 國立中興大學: 台中市. p. 64.
100. Sharif, S.S., S. Ahmad, D.C. Nababan, M.A. Rhamdhani, and F. Gulshan, Thermodynamics analysis and experimental investigation of EAF slag based ceramics materials for circular economy. Ceramics International, 2024. 50(20, Part B): p. 40058-40068.
101. Jagadisha, K.B. Rao, G. Nayak, M. Kamath, and A. Tantri, Synergetic effect of binary, ternary and quaternary binders on microstructural, mechanical and durability aspects of EAF aggregate HPC system. Construction and Building Materials, 2024. 411: p. 134673.
102. Liu, L., X. Fan, M. Gan, J. Wei, Z. Gao, Z. Sun, Z. Ji, Y. Wu, and J. Li, Microwave-enhanced selective leaching calcium from steelmaking slag to fix CO2 and produce high value-added CaCO3. Separation and Purification Technology, 2024. 330: p. 125395.
103. Ebato, Y., Y. Hayashi, and H. Takizawa, Green fabrication of unoxidized graphene by combination of frozen dispersion and multimode microwave thermal shock. Cleaner Engineering and Technology, 2023. 17: p. 100681.
104. Yasipourtehrani, S., S. Tian, V. Strezov, T. Kan, and T. Evans, Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chemical Engineering Journal, 2020. 387: p. 124140.
105. Lin, Y., B. Yan, B. Mitas, C. Li, T. Fabritius, and Q. Shu, Calcium carbonate synthesis from Kambara reactor desulphurization slag via indirect carbonation for CO2 capture and utilization. Journal of Environmental Management, 2024. 351: p. 119773.
106. Zevenhoven, R., Metals Production, CO2 Mineralization and LCA. Metals, 2020. 10(3): p. 342.
107. Hall, C., D.J. Large, B. Adderley, and H.M. West, Calcium leaching from waste steelmaking slag: Significance of leachate chemistry and effects on slag grain mineralogy. Minerals Engineering, 2014. 65: p. 156-162.
108. Owais, M., M.R. Yazdani, and M. Jarvinen, Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags. Chemical Engineering and Processing - Process Intensification, 2021. 166: p. 108489.
109. Perederiy, I. and V.G. Papangelakis, Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. Journal of Hazardous Materials, 2017. 321: p. 737-744.
110. Owais, M., R.M. Yazdani, and M. Jarvinen, Wet extractive grinding process for efficient calcium recovery from steelmaking slags. Chemical Engineering and Processing - Process Intensification, 2020. 151: p. 107917.
111. Mattila, H.-P., I. Grigali?nait?, and R. Zevenhoven, Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chemical Engineering Journal, 2012. 192: p. 77-89.
112. DiGiovanni, C., O.A. Hisseine, and A.N. Awolayo, Carbon dioxide sequestration through steel slag carbonation: Review of mechanisms, process parameters, and cleaner upcycling pathways. Journal of CO2 Utilization, 2024. 81: p. 102736.
113. Zhou, G.-T., Q.-Z. Yao, S.-Q. Fu, and Y.-B. Guan, Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite. European Journal of Mineralogy, 2010. 22(2): p. 259-269.
114. 經濟部能源署. 112年度電力排碳係數. 2024.
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2024-11-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明