參考文獻 |
1. Bui, M., C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, and N. Mac Dowell, Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 2018. 11(5): p. 1062-1176.
2. Shu, D.Y., S. Deutz, B.A. Winter, N. Baumgartner, L. Leenders, and A. Bardow, The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. Renewable and Sustainable Energy Reviews, 2023. 178: p. 113246.
3. Mun, M. and H. Cho, Mineral Carbonation for Carbon Sequestration with Industrial Waste. Energy Procedia, 2013. 37: p. 6999-7005.
4. 環境部, 2023年中華民國國家溫室氣體排放清冊報告. 2023.
5. Feng, D. and A. Hicks, Environmental, human health, and CO2 payback estimation and comparison of enhanced weathering for carbon capture using wollastonite. Journal of Cleaner Production, 2023. 414: p. 137625.
6. Jebabli, I., A. Lahiani, and S. Mefteh-Wali, Quantile connectedness between CO2 emissions and economic growth in G7 countries. Resources Policy, 2023. 81: p. 103348.
7. Lau, L.C., K.T. Lee, and A.R. Mohamed, Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment. Renewable and Sustainable Energy Reviews, 2012. 16(7): p. 5280-5284.
8. Bauer, A. and K. Menrad, Standing up for the Paris Agreement: Do global climate targets influence individuals’ greenhouse gas emissions? Environmental Science & Policy, 2019. 99: p. 72-79.
9. Sun, R.-S., X. Gao, L.-C. Deng, and C. Wang, Is the Paris rulebook sufficient for effective implementation of Paris Agreement? Advances in Climate Change Research, 2022. 13(4): p. 600-611.
10. 經濟部能源局, 111年度我國燃料燃燒之二氧化碳排放統計與分析. 2022.
11. 工業技術研究院, 國際能源總署(IEA)2022年碳排回顧報告. 2023.
12. Davoodi, S., M. Al-Shargabi, D.A. Wood, V.S. Rukavishnikov, and K.M. Minaev, Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Science and Engineering, 2023. 117: p. 205070.
13. Sharma, N. and S.S. Mahapatra, A preliminary analysis of increase in water use with carbon capture and storage for Indian coal-fired power plants. Environmental Technology & Innovation, 2018. 9: p. 51-62.
14. Tan, W.-L., A.L. Ahmad, C.P. Leo, and S.S. Lam, A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. Journal of CO2 Utilization, 2020. 42: p. 101333.
15. 郭竹婷, 改質轉爐石捕捉二氧化碳之研究, in 地球科學系碩博士班. 2012, 國立成功大學: 台南市. p. 125.
16. 張晏齊, 二氧化碳在混和溶劑(DETA)與(PZ)水溶液之氣液平衡量測研究, in 化學工程研究所. 2012, 中原大學: 桃園縣. p. 77.
17. Gowd, S.C., P. Ganeshan, V.S. Vigneswaran, M.S. Hossain, D. Kumar, K. Rajendran, H.H. Ngo, and A. Pugazhendhi, Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development. Science of The Total Environment, 2023. 883: p. 163656.
18. 許振譽, 台灣燃煤電廠二氧化碳捕捉及封存之成本效益分析, in 資源工程學系. 2014, 國立成功大學: 台南市. p. 66.
19. 蔡枚吟, 設計和製備新型微孔材料應用於二氧化碳捕捉和碘吸附, in 材料與光電科學學系研究所. 2020, 國立中山大學: 高雄市. p. 76.
20. 陳崇和, 高濃度醇胺於超重力旋轉床吸收CO2之應用, in 化學工程學系. 2012, 國立清華大學: 新竹市. p. 76.
21. 林于萱, 改質層狀雙氫氧化物應用於二氧化碳吸附, in 環境工程學系碩士班. 2021, 國立宜蘭大學: 宜蘭縣. p. 121.
22. 廖平浩, 純氧燃燒中以爐石在高溫下去除二氧化碳之研究, in 環境工程學系碩博士班. 2012, 國立成功大學: 台南市. p. 129.
23. Holloway, S., J.M. Pearce, V.L. Hards, T. Ohsumi, and J. Gale, Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007. 32(7): p. 1194-1201.
24. Stenhouse, M.J., J. Gale, and W. Zhou, Current status of risk assessment and regulatory frameworks for geological CO2 storage. Energy Procedia, 2009. 1(1): p. 2455-2462.
25. Maul, P.R., R. Metcalfe, J. Pearce, D. Savage, and J.M. West, Performance assessments for the geological storage of carbon dioxide: Learning from the radioactive waste disposal experience. International Journal of Greenhouse Gas Control, 2007. 1(4): p. 444-455.
26. Neeraj and S. Yadav, Carbon storage by mineral carbonation and industrial applications of CO2. Materials Science for Energy Technologies, 2020. 3: p. 494-500.
27. Bachu, S., Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 2015. 40: p. 188-202.
28. Qin, J., Q. Zhong, Y. Tang, Z. Rui, S. Qiu, and H. Chen, CO2 storage potential assessment of offshore saline aquifers in China. Fuel, 2023. 341: p. 127681.
29. Adams, E.E., D.S. Golomb, and H.J. Herzog, Ocean disposal of CO2 at intermediate depths. Energy Conversion and Management, 1995. 36(6): p. 447-452.
30. de Figueiredo, M.A., D.M. Reiner, and H.J. Herzog, - Ocean Carbon Sequestration: A Case Study in Public and Institutional Perceptions, in Greenhouse Gas Control Technologies - 6th International Conference, J. Gale and Y. Kaya, Editors. 2003, Pergamon: Oxford. p. 799-804.
31. 吳柏諭, 我國二氧化碳地質封存之研究-以二氧化碳定性及封存土地為中心, in 法律學研究所. 2015, 國立中正大學: 嘉義縣. p. 151.
32. 李幸宜, 微藻變身生質金礦, in 工業技術與資訊月刊. 2019.
33. Ma, M., H. Mehdizadeh, M.-Z. Guo, and T.-C. Ling, Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Construction and Building Materials, 2021. 304: p. 124628.
34. Ren, S., T. Aldahri, W. Liu, and B. Liang, CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments. Energy, 2021. 214: p. 118975.
35. 許伯良, 林平全, and 徐登科. 轉爐石產製與工程應用. 2011.
36. Kim, J. and G. Azimi, The CO2 sequestration by supercritical carbonation of electric arc furnace slag. Journal of CO2 Utilization, 2021. 52: p. 101667.
37. 陳立, 電弧爐氧化碴為混凝土骨材之可行性研究, in 土木工程研究所. 2003, 國立中央大學: 桃園縣. p. 303.
38. 中聯資源股份有限公司. 各種爐石成分比較表. [Internet]; Available from: https://www.chc.com.tw/pe_p2.html.
39. Chen, C., J. Yu, G. Song, and K. Che, Desorption performance of commercial zeolites for temperature-swing CO2 capture. Journal of Environmental Chemical Engineering, 2023. 11(3): p. 110253.
40. 陶以瑄, 金屬改質沸石與奈米鈦管對低濃度二氧化碳吸附/脫附效能研究, in 環境工程系所. 2013, 國立交通大學: 新竹市. p. 118.
41. Broda, M., A.M. Kierzkowska, and C.R. Muller, Influence of the Calcination and Carbonation Conditions on the CO2 Uptake of Synthetic Ca-Based CO2 Sorbents. Environmental Science & Technology, 2012. 46(19): p. 10849-10856.
42. Hsieh, S.-L., F.-Y. Li, P.-Y. Lin, D.E. Beck, R. Kirankumar, G.-J. Wang, and S. Hsieh, CaO recovered from eggshell waste as a potential adsorbent for greenhouse gas CO2. Journal of Environmental Management, 2021. 297: p. 113430.
43. Wang, T., D.-C. Xiao, C.-H. Huang, Y.-K. Hsieh, C.-S. Tan, and C.-F. Wang, CO2 uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds. Journal of Hazardous Materials, 2014. 270: p. 92-101.
44. 吳宗欣, 釩/銅金屬活性碳觸媒氮氧化物還原活性之探討, in 環境工程與科學系暨研究所. 2011, 嘉南藥理科技大學: 台南市. p. 172.
45. 葉育宸, 藉由活性碳表面進行氨化處理以提升二氧化碳, in 環境與安全衛生工程系環境工程碩士班. 2016, 明志科技大學: 新北市. p. 85.
46. Sirinwaranon, P., V. Sricharoenchaikul, S. Vichaphund, K. Soongprasit, M. Rodchom, P. Wimuktiwan, and D. Atong, Synthesis and characterization of the porous activated carbon from end-of-life tire pyrolysis for CO2 sequestration. Journal of Analytical and Applied Pyrolysis, 2023. 174: p. 106139.
47. Sun, J., M.F. Bertos, and S.J.R. Simons, Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & Environmental Science, 2008. 1(3): p. 370-377.
48. Azdarpour, A., M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, and M.A. Karaei, A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 2015. 279: p. 615-630.
49. Myers, C.A., T. Nakagaki, and K. Akutsu, Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas. International Journal of Greenhouse Gas Control, 2019. 87: p. 100-111.
50. Winnefeld, F., A. Leemann, A. German, and B. Lothenbach, CO2 storage in cement and concrete by mineral carbonation. Current Opinion in Green and Sustainable Chemistry, 2022. 38: p. 100672.
51. 簡芳瑜, 以三相碳酸化系統探討還原碴封存二氧化碳 之研究, in 環境工程研究所. 2016, 國立中央大學: 桃園縣. p. 139.
52. Chen, Z., Z. Cang, F. Yang, J. Zhang, and L. Zhang, Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review. Journal of CO2 Utilization, 2021. 54: p. 101738.
53. Wang, F., D. Dreisinger, M. Jarvis, and T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Minerals Engineering, 2019. 131: p. 185-197.
54. Liu, W., L. Teng, S. Rohani, Z. Qin, B. Zhao, C.C. Xu, S. Ren, Q. Liu, and B. Liang, CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chemical Engineering Journal, 2021. 416: p. 129093.
55. Zhao, Q., X. Chu, X. Mei, Q. Meng, J. Li, C. Liu, H. Saxen, and R. Zevenhoven, Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization. Front Chem, 2020. 8: p. 571504.
56. Yasipourtehrani, S., S. Tian, V. Strezov, T. Kan, and T. Evans, Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chemical Engineering Journal, 2020. 387.
57. Said, A., T. Laukkanen, and M. Jarvinen, Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Applied Energy, 2016. 177: p. 602-611.
58. Eloneva, S., S. Teir, J. Salminen, C.-J. Fogelholm, and R. Zevenhoven, Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate. Industrial & Engineering Chemistry Research, 2008. 47(18): p. 7104-7111.
59. Kodama, S., T. Nishimoto, N. Yamamoto, K. Yogo, and K. Yamada, Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy, 2008. 33(5): p. 776-784.
60. He, L., D. Yu, W. Lv, J. Wu, and M. Xu, A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash. Industrial & Engineering Chemistry Research, 2013. 52(43): p. 15138-15145.
61. Jiang, H., H. Guo, P. Li, Y. Li, and B. Yan, Preparation of CaMgAl-LDHs and mesoporous silica sorbents derived from blast furnace slag for CO2 capture. RSC Advances, 2019. 9(11): p. 6054-6063.
62. Mei, X., Q. Zhao, Y. Min, C. Liu, P. Shi, H. Saxen, and R. Zevenhoven, Dissolution behavior of steelmaking slag for Ca extraction toward CO2 sequestration. Journal of Environmental Chemical Engineering, 2023. 11(3): p. 110043.
63. Zhang, H.-n., A.-j. Xu, D.-f. He, and J. Cui, Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure. Journal of Central South University, 2013. 20(6): p. 1482-1489.
64. Owais, M., M. Jarvinen, P. Taskinen, and A. Said, Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. Journal of CO2 Utilization, 2019. 31: p. 1-7.
65. Lee, S., J.-W. Kim, S. Chae, J.-H. Bang, and S.-W. Lee, CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. Journal of CO2 Utilization, 2016. 16: p. 336-345.
66. Said, A., H.-P. Mattila, M. Jarvinen, and R. Zevenhoven, Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Applied Energy, 2013. 112: p. 765-771.
67. Bao, W., H. Li, and Y. Zhang, Selective Leaching of Steelmaking Slag for Indirect CO2 Mineral Sequestration. Industrial & Engineering Chemistry Research, 2010. 49(5): p. 2055-2063.
68. Zhang, Y., L. Yu, K. Cui, H. Wang, and T. Fu, Carbon capture and storage technology by steel-making slags: Recent progress and future challenges. Chemical Engineering Journal, 2023. 455.
69. Song, Q., M.-Z. Guo, L. Wang, and T.-C. Ling, Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resources, Conservation and Recycling, 2021. 173: p. 105740.
70. Lee, S.M., S.H. Lee, S.K. Jeong, M.H. Youn, D.D. Nguyen, S.W. Chang, and S.S. Kim, Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. Journal of Industrial and Engineering Chemistry, 2017. 53: p. 233-240.
71. Zhang, T., G. Chu, J. Lyu, Y. Cao, W. Xu, K. Ma, L. Song, H. Yue, and B. Liang, CO2 mineralization of carbide slag for the production of light calcium carbonates. Chinese Journal of Chemical Engineering, 2022. 43: p. 86-98.
72. Sun, Y., M.-S. Yao, J.-P. Zhang, and G. Yang, Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal, 2011. 173(2): p. 437-445.
73. Huang, X., J. Zhang, and L. Zhang, Accelerated carbonation of steel slag: A review of methods, mechanisms and influencing factors. Construction and Building Materials, 2024. 411: p. 134603.
74. Jo, H., M.-G. Lee, J. Park, and K.-D. Jung, Preparation of high-purity nano-CaCO3 from steel slag. Energy, 2017. 120: p. 884-894.
75. Nielsen, P., M.A. Boone, L. Horckmans, R. Snellings, and M. Quaghebeur, Accelerated carbonation of steel slag monoliths at low CO2 pressure – microstructure and strength development. Journal of CO2 Utilization, 2020. 36: p. 124-134.
76. Polettini, A., R. Pomi, and A. Stramazzo, CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. Journal of Environmental Management, 2016. 167: p. 185-195.
77. Pedersen, O., T. Colmer, and K. Sand-Jensen, Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods. Frontiers in Plant Science, 2013. 4: p. 140.
78. Chen, X., J. Yang, M. Shen, Y. Chen, Q. Yu, and J. Xie, Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science & Technology, 2022. 123: p. 198-209.
79. 謝佳琦, 微波誘導奈米銅/鐵雙金屬降解氯苯, in 環境與安全衛生工程所. 2008, 國立高雄第一科技大學: 高雄市. p. 86.
80. 邱耀賢, 以微波輔助頂空液相微萃取技術結合氣相層析質譜儀偵測柑橘中農藥之殘留, in 食品科技研究所. 2009, 中臺科技大學: 台中市. p. 95.
81. Rampal and S. Zafar, Effect of microwave power on the hole characteristics in microwave-drilled kenaf/polypropylene composites. Journal of Manufacturing Processes, 2023. 102: p. 218-230.
82. Virlley, S., S. Shukla, S. Arora, D. Shukla, D. Nagdiya, T. Bajaj, S. Kujur, Garima, A. Kumar, J.S. Bhatti, A. Singh, and C. Singh, Recent advances in microwave-assisted nanocarrier based drug delivery system: Trends and technologies. Journal of Drug Delivery Science and Technology, 2023. 87: p. 104842.
83. Kumar Baghel, P., Application of microwave in manufacturing technology: A review. Materials Today: Proceedings, 2023.
84. Liu, C., H. Liu, J. Long, B. Liao, X. Wang, Z. Sun, Y. Guo, and Z. Zheng, Interaction of dry and water-saturated uranium ore with microwave and enhanced extraction of uranium. Minerals Engineering, 2023. 196: p. 108047.
85. Kuo, C.-Y., C.-H. Wu, and S.-L. Lo, Removal of copper from industrial sludge by traditional and microwave acid extraction. Journal of Hazardous Materials, 2005. 120(1): p. 249-256.
86. Qin, N., Q. Min, M. Ma, and W. Hu, Progress in Extraction of Traditional Chinese Medicine Assisted with Microwave Irradiation. Journal of Microwave Chemistry 微波化?, 2018. 2(3): p. 79-84.
87. Mizuno, N., S. Kosai, and E. Yamasue, Microwave-based extractive metallurgy to obtain pure metals: A review. Cleaner Engineering and Technology, 2021. 5: p. 100306.
88. Vere?, J., M. Lovas, ?. Jakabsky, V. ?epelak, and S. Hredzak, Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy, 2012. 129-130: p. 67-73.
89. Perez-Cid, B., I. Lavilla, and C. Bendicho, Application of microwave extraction for partitioning of heavy metals in sewage sludge. Analytica Chimica Acta, 1999. 378(1): p. 201-210.
90. Jang, K., W.Y. Choi, I. Moulay, D. Lee, and J. Park, Strong acid-mediated Ca2+ extraction–CO2 mineralization process for CO2 absorption and nano-sized CaCO3 production from cement kiln dust: Simultaneous treatment of CO2 and alkaline wastewater. Journal of Environmental Chemical Engineering, 2024. 12(1): p. 111746.
91. Samanta, N.S., Anweshan, P. Mondal, U. Bora, and M.K. Purkait, Synthesis of precipitated calcium carbonate from LD-slag using CO2. Materials Today Communications, 2023. 36: p. 106588.
92. Pusparizkita, Y.M., W.W. Schmahl, M. Ambarita, H.N. Kholid, A.Y. Sadewa, R. Ismail, J. Jamari, and A.P. Bayuseno, Mineralizing CO2 and producing polymorphic calcium carbonates from bitumen-rock asphalt manufacturing solid residues. Cleaner Engineering and Technology, 2023. 12: p. 100602.
93. Yang, X., Y. Feng, X. Zhang, M. Sun, D. Qiao, J. Li, and X. Li, Mineral soil conditioner requirement and ability to adjust soil acidity. Scientific Reports, 2020. 10(1): p. 18207.
94. Song, X., Y. Cao, X. Bu, and X. Luo, Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process. Applied Surface Science, 2021. 536: p. 147958.
95. 楊剛庭, 連續萃取法對岩石二氧化碳地質封存潛勢評估初探, in 應用地球物理研究所. 2015, 國立中正大學: 嘉義縣. p. 80.
96. 林凱晨, ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究, in 化學系. 2015, 國立臺灣師範大學: 台北市. p. 115.
97. Tran, K.S., B. Shirinzadeh, A. Ehrampoosh, P. Zhao, and Y. Shi, Detection, Verification and Analysis of Micro Surface Defects in Steel Filament Using Eddy Current Principles, Scanning Electron Microscopy and Energy-Dispersive Spectroscopy. Sensors, 2023. 23(21): p. 8873.
98. Tummala, S.K., P.B. Bobba, and K. Satyanarayana, SEM & EDAX analysis of super capacitor. Advances in Materials and Processing Technologies, 2022. 8(sup4): p. 2398-2409.
99. 周紫慧, 製備二氧化鈦/石墨烯奈米材料處理草酸廢水之研究, in 環境工程學系所. 2024, 國立中興大學: 台中市. p. 64.
100. Sharif, S.S., S. Ahmad, D.C. Nababan, M.A. Rhamdhani, and F. Gulshan, Thermodynamics analysis and experimental investigation of EAF slag based ceramics materials for circular economy. Ceramics International, 2024. 50(20, Part B): p. 40058-40068.
101. Jagadisha, K.B. Rao, G. Nayak, M. Kamath, and A. Tantri, Synergetic effect of binary, ternary and quaternary binders on microstructural, mechanical and durability aspects of EAF aggregate HPC system. Construction and Building Materials, 2024. 411: p. 134673.
102. Liu, L., X. Fan, M. Gan, J. Wei, Z. Gao, Z. Sun, Z. Ji, Y. Wu, and J. Li, Microwave-enhanced selective leaching calcium from steelmaking slag to fix CO2 and produce high value-added CaCO3. Separation and Purification Technology, 2024. 330: p. 125395.
103. Ebato, Y., Y. Hayashi, and H. Takizawa, Green fabrication of unoxidized graphene by combination of frozen dispersion and multimode microwave thermal shock. Cleaner Engineering and Technology, 2023. 17: p. 100681.
104. Yasipourtehrani, S., S. Tian, V. Strezov, T. Kan, and T. Evans, Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chemical Engineering Journal, 2020. 387: p. 124140.
105. Lin, Y., B. Yan, B. Mitas, C. Li, T. Fabritius, and Q. Shu, Calcium carbonate synthesis from Kambara reactor desulphurization slag via indirect carbonation for CO2 capture and utilization. Journal of Environmental Management, 2024. 351: p. 119773.
106. Zevenhoven, R., Metals Production, CO2 Mineralization and LCA. Metals, 2020. 10(3): p. 342.
107. Hall, C., D.J. Large, B. Adderley, and H.M. West, Calcium leaching from waste steelmaking slag: Significance of leachate chemistry and effects on slag grain mineralogy. Minerals Engineering, 2014. 65: p. 156-162.
108. Owais, M., M.R. Yazdani, and M. Jarvinen, Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags. Chemical Engineering and Processing - Process Intensification, 2021. 166: p. 108489.
109. Perederiy, I. and V.G. Papangelakis, Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. Journal of Hazardous Materials, 2017. 321: p. 737-744.
110. Owais, M., R.M. Yazdani, and M. Jarvinen, Wet extractive grinding process for efficient calcium recovery from steelmaking slags. Chemical Engineering and Processing - Process Intensification, 2020. 151: p. 107917.
111. Mattila, H.-P., I. Grigali?nait?, and R. Zevenhoven, Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chemical Engineering Journal, 2012. 192: p. 77-89.
112. DiGiovanni, C., O.A. Hisseine, and A.N. Awolayo, Carbon dioxide sequestration through steel slag carbonation: Review of mechanisms, process parameters, and cleaner upcycling pathways. Journal of CO2 Utilization, 2024. 81: p. 102736.
113. Zhou, G.-T., Q.-Z. Yao, S.-Q. Fu, and Y.-B. Guan, Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite. European Journal of Mineralogy, 2010. 22(2): p. 259-269.
114. 經濟部能源署. 112年度電力排碳係數. 2024. |