博碩士論文 111326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:913 、訪客IP:18.224.3.26
姓名 余泳潔(Yung-Jie Yu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 液相電漿結合觸媒去除水中異丙醇及產氫效率探討
(Removal of isopropanol and generation of hydrogen via liquid-phase plasma combined with Ni/TiO2)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 隨著工業及科技產業發展,環境問題日益嚴重,高科技產業於製造過程需要使用大量的純水及有機溶劑,因此產生大量之有機廢水,其中半導體產業有機廢水常含有異丙醇(Isopropanol,簡稱IPA),IPA於工業及科技產業當中常作為清潔劑和消毒劑,因此揮發性有機化合物(VOCs)的排放引起越來越多的關注,因為它們對人類健康和環境造成不良影響。本研究通過實驗室規模的系統,製備Ni/TiO2之光觸媒並評估其與液相電漿結合以去除水中有機物的效果。使氬氣及氧氣通過質量流量計進入混合球再進入反應器中,生成含有氬氣及氧氣的氣泡。本研究以含浸法製備Ni/TiO2之光觸媒。實驗測試在室溫下觸媒結合液態電漿 (LPP) 之效應,而降解效率以COD檢測儀進行分析,產物則通過二氧化碳分析儀、氫氣分析儀及氣相層析儀/質譜儀進行分析。在液相電漿放電過程中,利用電漿-液體系統中豐富的活性物質,如‧OH、O‧ 和H?O? 降解IPA。針對不同的操作條件進行實驗,包括電漿功率、觸媒種類和濃度等參數的變化。結果顯示,在100 mg/L的IPA、150 μS/cm的導電度和pH值為11,使用Ar:O2=1:1的條件下,5 wt% Ni/TiO2 觸媒結合液相電漿對IPA的去除率達93.9 ± 5.9%,同時檢測氫氣的生成速率為697± 65.4 μmol/h?g,且在3,000 mg/L的IPA、150 μS/cm的導電度和pH值為11,使用純氬氣的條件下,氫氣的生成速率提升至2,437 ± 70.3 μmol/h?g。本研究提供了一種能同時實現有機污染物去除和氫氣生成的方法。若能有效收集和利用產出的氫氣,將使此技術在市場上更具競爭力,並期待其在水處理中的應用進一步發展。
摘要(英) With the rapid development of industrial and technological sectors, environmental issues have become increasingly serious. High-tech industries consume large amounts of ultrapure water and organic solvents in their production processes, leading to significant discharge of organic wastewater. Wastewater from the semiconductor industry typically contains isopropanol (IPA), commonly used as a cleaning and disinfecting agent in industrial and technological applications. The emission of organic compounds has raised considerable public concern due to their harmful effects on human health and the environment. This study investigates the removal of IPA and hydrogen production efficiency using Ni/TiO2 photocatalysts combined with liquid-phase plasma (LPP) in a laboratory-scale experimental system. Argon and oxygen gases were introduced into the reactor through mass flow controllers to generate gas bubbles. The Ni/TiO2 photocatalysts were prepared via the impregnation method. Experimental tests were conducted at room temperature, and degradation efficiency was analyzed using a COD analyzer, while products were analyzed using a CO? analyzer, hydrogen analyzer, and gas chromatography-mass spectrometry (GC/MS). During the liquid-phase plasma discharge process, abundant reactive species such as ‧OH, O‧, H‧ and H?O? were generated in the plasma-liquid system, facilitating IPA degradation. Experimental tests were conducted under various operating conditions, including plasma power, catalyst type, and catalyst concentration. Results showed that under conditions of 100 mg/L IPA, 150 μS/cm conductivity, pH 11, and an Ar:O? ratio of 1:1, the combination of LPP with 5 wt% Ni/TiO2 achieved an IPA removal efficiency of 93.9 ± 5.9%, with a hydrogen production rate of 697 ± 65.4 μmol/h?g. Furthermore, under conditions of 3,000 mg/L IPA, 150 μS/cm conductivity, pH 11, and pure argon gas, the hydrogen production rate increased to 2,437 ± 70.3 μmol/h?g. Thus, this study proposes a method capable of simultaneously achieving organic pollutant removal and hydrogen generation. The hydrogen produced can enhance the competitiveness of this technology in the market and potential applications in wastewater treatment.
關鍵字(中) ★ 液相電漿
★ 光觸媒
★ 異丙醇
★ 產氫
關鍵字(英) ★ liquid-phase plasma
★ photocatalyst
★ isopropanol (IPA)
★ hydrogen generation
論文目次 致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 異丙醇及COD簡介 4
2.1.1 異丙醇之特性、危害、來源及控管 4
2.1.2 COD 6
2.2 異丙醇之處理技術 6
2.3 有機溶劑之處理技術 7
2.3.1 生物法 7
2.3.2 物理/化學法 8
2.4 液相電漿 ( Liquid-phase plasma, LPP ) 與發展現況 9
2.5 光觸媒 12
2.5.1 光觸媒介紹 12
2.5.2 光觸媒去除有機污染物之應用 15
2.5.3 光觸媒產氫之應用 16
2.6 LPP去除有機污染物之影響因素及應用 19
第三章 研究方法 25
3.1 研究流程及架構 25
3.2 預備實驗 26
3.2.1 觸媒材料製備 26
3.2.2 觸媒材料之物化特性分析 27
3.3 觸媒測試方法及實驗配置 29
3.4 實驗之材料與設備 32
3.5 實驗結果計算 36
第四章 結果與討論 37
4.1 觸媒基本物化特性分析 37
4.1.1 高解析度比表面積分析儀(BET)分析結果 37
4.1.2 X光粉末繞射儀(XRD)晶相鑑定 37
4.1.3 X射線光電子能譜儀 ( XPS ) 分析 38
4.1.4 X-射線螢光(XRF)分析 41
4.1.5 紫外光-可見光/近紅外光分析 42
4.2 液相電漿對IPA去除效率之探討 42
4.2.1 電漿反應器設計對IPA去除效率之影響 43
4.2.2 系統穩定性測試 44
4.2.3 電源供應器對IPA去除效率之影響 44
4.2.4 操作電壓對IPA去除效率之影響 46
4.2.5 電極幾何形狀對IPA去除效率之影響 48
4.2.6 進氣組成對IPA去除效率之影響 49
4.2.7 氣體流量對IPA去除效率之影響 49
4.2.8 玻璃珠對IPA去除效率之影響 51
4.2.9 IPA初始濃度對液相電漿去除IPA效率之影響 51
4.2.10 導電度對IPA去除效率之影響 53
4.2.11 pH值對IPA去除效率之影響 55
4.3 電漿觸媒對IPA去除效率之探討 57
4.3.1 觸媒添加對液相電漿去除IPA之影響 57
4.3.2 氧氣含量對液相電漿產氫及去除IPA之影響 58
4.3.3 異丙醇濃度對液相電漿產氫之影響 61
4.4 異丙醇產氫之反應機制 64
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 68
參考文獻 Angeles-Olvera, Z., Crespo-Yapur, A., Rodriguez, O., Cholula-Diaz, J. L., Martinez, L. M., & Videa, M. (2022). Nickel-based electrocatalysts for water electrolysis. Energies, 15(5), 1609. https://doi.org/10.3390/en15051609
Arzate, S., Pfister, S., Oberschelp, C., & Sanchez-Perez, J. A. (2019). Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of the Total Environment, 694, 133572. https://doi.org/10.1016/j.scitotenv.2019.07.378
Bion, N., Duprez, D., & Epron, F. (2012). Design of nanocatalysts for green hydrogen production from bioethanol. ChemSusChem, 5(1), 76-84. https://doi.org/10.1002/cssc.201100400
Bonizzoni, G., & Vassallo, E. (2002). Plasma physics and technology; industrial applications. Vacuum, 64(3-4), 327-336. https://doi.org/10.1016/S0042-207X(01)00341-4
Chen, W.T., Chan, A., Sun-Waterhouse, D., Llorca, J., Idriss, H., & Waterhouse, G. I. (2018). Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of Catalysis, 367, 27-42. https://doi.org/10.1016/j.jcat.2018.08.015
Chen, W.T., Chan, A., Sun-Waterhouse, D., Moriga, T., Idriss, H., & Waterhouse, G. I. (2015). Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 326, 43-53. https://doi.org/10.1016/j.jcat.2015.03.008
Chen, W., Wang, Y., Liu, S., Gao, L., Mao, L., Fan, Z., Shangguan, W., & Jiang, Z. (2018). Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Applied Surface Science, 445, 527-534. https://doi.org/10.1016/j.apsusc.2018.03.209
Chen, Z., Li, X., Hu, D., Cui, Y., Gu, F., Jia, F., Xiao, T., Su, H., Xu, J., & Wang, H. (2018). Performance and methane fermentation characteristics of a pilot scale anaerobic membrane bioreactor (AnMBR) for treating pharmaceutical wastewater containing m-cresol (MC) and iso-propyl alcohol (IPA). Chemosphere, 206, 750-758.
https://doi.org/10.1016/j.chemosphere.2018.05.008
Chen, Z., & Mathur, V. (2002). Nonthermal plasma for gaseous pollution control. Industrial & Engineering Chemistry Research, 41(9), 2082-2089. https://doi.org/10.1021/ie010459h
Cheng, K.Y., Hsieh, L.L., Yao, K.S., Lin, C.H., Chang, E.J., & Chang, C.Y. (2010). Decomposition of wastewater containing isopropyl alcohol using the gamma-ray/hydrogen peroxide process. Environmental Engineering and Management Journal, 20(3), 151-156.
https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A10022991
Choi, J., Jeong, J.H., & Chung, J. (2013). Degradation of acetone and isopropylalcohol in electronic wastewater using Fe-and Al-immobilized catalysts. Chemical Engineering Journal, 218, 260-266.
https://doi.org/10.1016/j.cej.2012.11.004
Chung, K.H., Jeong, S., Kim, B.J., Kim, J.S., Park, Y.K., & Jung, S.C. (2018). Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts. International Journal of Hydrogen Energy, 43(11), 5873-5880.
https://doi.org/10.1016/j.ijhydene.2017.09.065
Coutanceau, C., & Baranton, S. (2016). Electrochemical conversion of alcohols for hydrogen production: a short overview. Wiley Interdisciplinary Reviews: Energy and Environment, 5(4), 388-400. https://doi.org/10.1002/wene.193
Cui, Y., Shi, X., Guang, C., Zhang, Z., Wang, C., & Wang, C. (2019). Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Safety and Environmental Protection, 122, 1-12.
https://doi.org/10.1016/j.psep.2018.11.017
Ding, J., Sun, X., Wang, Q., Li, D. S., Li, X., Li, X., Chen, L., Zhang, X., Tian, X., & Ostrikov, K. K. (2021). Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 873, 159871. https://doi.org/10.1016/j.jallcom.2021.159871
Dong, B., Wang, P., Li, Z., Tu, W., & Tan, Y. (2022). Degrading hazardous benzohydroxamic acid in the industrial beneficiation wastewater by dielectric barrier discharge reactor. Separation and Purification Technology, 299, 121644. https://doi.org/10.1016/j.seppur.2022.121644
Fernandes, A., Mako?, P., Khan, J. A., & Boczkaj, G. (2019). Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. Journal of Cleaner Production, 208, 54-64. https://doi.org/10.1016/j.jclepro.2018.10.081
Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V. N., & Fridman, A. (2008). Applied plasma medicine. Plasma Processes and Polymers, 5(6), 503-533. https://doi.org/10.1002/ppap.200700154
Galdamez-Martinez, A., Bai, Y., Santana, G., Sprick, R. S., & Dutt, A. (2020). Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: Role of structural properties. International Journal of Hydrogen Energy, 45(56), 31942-31951. https://doi.org/10.1016/j.ijhydene.2020.08.247
Ganesh, I., Gupta, A., Kumar, P., Sekhar, P., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and Characterization of Ni?Doped TiO2 Materials for Photocurrent and Photocatalytic Applications. The Scientific World Journal, 2012(1), 127326. https://doi.org/10.1100/2012/127326
Grabowski, L., Van Veldhuizen, E., Pemen, A., & Rutgers, W. (2006). Corona above water reactor for systematic study of aqueous phenol degradation. Plasma Chemistry and Plasma Processing, 26, 3-17. https://doi.org/10.1007/s11090-005-8721-8
Hasani, M., Khani, M. R., Karimaei, M., Yaghmaeian, K., & Shokri, B. (2019). Degradation of 4-chlorophenol in aqueous solution by dielectric barrier discharge system: effect of fed gases. Journal of Environmental Health Science and Engineering, 17, 1185-1194. https://doi.org/10.1007/s40201-019-00433-3
He, D., Sun, Y., Xin, L., & Feng, J. (2014). Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chemical Engineering Journal, 258, 18-25. https://doi.org/10.1016/j.cej.2014.07.089
Hsu, Y. L., Wu, H. Z., Ye, M. H., Chen, J. P., Huang, H. L., & Lin, P. H. P. (2009). An industrial-scale biodegradation system for volatile organics contaminated wastewater from semiconductor manufacturing process. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 70-76.
https://doi.org/10.1016/j.jtice.2008.07.008
Ibrahim, S., El-Liethy, M. A., Abia, A. L. K., Abdel-Gabbar, M., Al Zanaty, A. M., & Kamel, M. M. (2020). Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic microorganisms. Science of the Total Environment, 703, 134786.
https://doi.org/10.1016/j.scitotenv.2019.134786
Iervolino, G., Vaiano, V., Pepe, G., Campiglia, P., & Palma, V. (2020). Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process. Catalysts, 10(8), 888.
https://doi.org/10.3390/catal10080888
Ihara, T., Nagata, H., Yagyu, Y., Ohshima, T., Kawasaki, H., & Suda, Y. (2015). Hydrogen production from water by using hybrid gas-liquid nanosecond pulsed discharge. 2015 IEEE Pulsed Power Conference (PPC),
https://doi.org/10.1109/PPC.2015.7296915
Ikoma, S., Satoh, K., & Itoh, H. (2009). Decomposition of methylene blue in an aqueous solution using a pulsed-discharge plasma at atmospheric pressure. IEEJ Transactions on Fundamentals and Materials, 129(4), 237-244.
https://doi.org/10.1541/ieejfms.129.237
Kabashima, H., Einaga, H., & Futamura, S. (2003). Hydrogen generation from water, methane, and methanol with nonthermal plasma. IEEE Transactions on Industry Applications, 39(2), 340-345.
https://doi.org/10.1109/TIA.2003.808968
Katsoyiannis, I. A., Canonica, S., & Silvon Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 45(13), 3811-3822.
https://doi.org/10.1016/j.watres.2011.04.038
Kim, S. C., Park, Y. K., & Jung, S. C. (2021). Recent applications of the liquid phase plasma process. Korean Journal of Chemical Engineering, 38(5), 885-898. https://doi.org/10.1007/s11814-020-0739-3
Kirkpatrick, M. J., & Locke, B. R. (2005). Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Industrial & Engineering Chemistry Research, 44(12), 4243-4248.
https://doi.org/10.1021/ie048807d
Lee, H., Park, Y. K., Kim, J. S., Park, Y. H., & Jung, S. C. (2019). Degradation of dimethyl phthalate using a liquid phase plasma process with TiO2 photocatalysts. Environmental Research, 169, 256-260.
https://doi.org/10.1016/j.envres.2018.11.025
Li, R., Zhu, X., Yan, X., Kobayashi, H., Yoshida, S., Chen, W., Du, L., Qian, K., Wu, B., & Zou, S. (2017). Oxygen-controlled hydrogen evolution reaction: molecular oxygen promotes hydrogen production from formaldehyde solution using Ag/MgO nanocatalyst. ACS Catalysis, 7(2), 1478-1484.
https://doi.org/10.1021/acscatal.6b03370
Li, X., & Li, F. (2001). Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology, 35(11), 2381-2387. https://doi.org/10.1021/es001752w
Li, Y., Bao, X., Chen, D., Wang, Z., Dewangan, N., Li, M., Xu, Z., Wang, J., Kawi, S., & Zhong, Q. (2019). A minireview on nickel?based heterogeneous electrocatalysts for water splitting. ChemCatChem, 11(24), 5913-5928.
https://doi.org/10.1002/cctc.201901682
Liang, R., Huang, R., Ying, S., Wang, X., Yan, G., & Wu, L. (2018). Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100 (Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano Research, 11, 1109-1123.
https://doi.org/10.1007/s12274-017-1730-0
Lin, S. H., & Kiang, C. D. (2003). Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. Journal of Hazardous Materials, 97(1-3), 159-171.
https://doi.org/10.1016/S0304-3894(02)00257-1
Lin, S. H., & Wang, C. S. (2004). Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials, 106(2-3), 161-168. https://doi.org/10.1016/j.jhazmat.2003.11.012
Lin, Y. T., Wang, Y. H., Wu, J. C., & Wang, X. (2021). Photo-Fenton enhanced twin-reactor for simultaneously hydrogen separation and organic wastewater degradation. Applied Catalysis B: Environmental, 281, 119517.
https://doi.org/10.1016/j.apcatb.2020.119517
Liu, Q., Ouyang, W., Yang, X., He, Y., Wu, Z., & Ostrikov, K. K. (2023). Plasma-microbubble treatment and sustainable agriculture application of diclofenac-contaminated wastewater. Chemosphere, 334, 138998.
https://doi.org/10.1016/j.chemosphere.2023.138998
Malik, M. A. (2010). Water purification by plasmas: which reactors are most energy efficient? Plasma Chemistry and Plasma Processing, 30, 21-31.
https://doi.org/10.1007/s11090-009-9202-2
Melian, E. P., Suarez, M. N., Jardiel, T., Calatayud, D. G., Del Campo, A., Dona-Rodriguez, J. M., Arana, J., & Diaz, O. G. (2019). Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. International Journal of Hydrogen Energy, 44(45), 24653-24666.
https://doi.org/10.1016/j.ijhydene.2019.07.230
Miichi, T. (2006). Decolorization of indigo carmine solution using discharge on surface of a gas-layer in water. IEEJ Trans. FM, 126(8), 851-856. https://doi.org/10.1541/ieejfms.126.851
Minami, E., Miyamoto, T., & Kawamoto, H. (2022). Decomposition of Saccharides and Alcohols in Solution Plasma for Hydrogen Production. Hydrogen, 3(3), 333-347. https://doi.org/10.3390/hydrogen3030020
Miotk, R., Hrycak, B., Czylkowski, D., Dors, M., Jasinski, M., & Mizeraczyk, J. (2016). Liquid fuel reforming using microwave plasma at atmospheric pressure. Plasma Sources Science and Technology, 25(3), 035022. https://doi.org/10.1088/0963-0252/25/3/035022
Mutaf-Yardimci, O., Saveliev, A., Fridman, A., & Kennedy, L. (1998). Employing plasma as catalyst in hydrogen production. International Journal of Hydrogen Energy, 23(12), 1109-1111.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189. https://doi.org/10.1016/S0360-3199(98)00005-
Ognier, S., Iya-Sou, D., Fourmond, C., & Cavadias, S. (2009). Analysis of mechanisms at the plasma–liquid interface in a gas–liquid discharge reactor used for treatment of polluted water. Plasma Chemistry and Plasma Processing, 29, 261-273. https://doi.org/10.1007/s11090-009-9179-x
Ohsawa, A., Morrow, R., & Murphy, A. (2000). An investigation of a DC dielectric barrier discharge using a disc of glass beads. Journal of Physics D: Applied Physics, 33(12), 1487. https://doi.org/10.1088/0022-3727/33/12/310
Park, Y. K., Chung, K. H., Park, I. S., Kim, S. C., Kim, S. J., & Jung, S. C. (2020). Photocatalytic degradation of 1, 4-dioxane using liquid phase plasma on visible light photocatalysts. Journal of Hazardous Materials, 399, 123087.
https://doi.org/10.1016/j.jhazmat.2020.123087
Pekarek, S., Mike?, J., & Krysa, J. (2015). Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General, 502, 122-128.
https://doi.org/10.1016/j.apcata.2015.06.003
Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G., Whitehead, J. C., Murphy, A. B., Gutsol, A. F., & Starikovskaia, S. (2012). The 2012 plasma roadmap. Journal of Physics D: Applied Physics, 45(25), 253001. https://doi.org/10.1088/0022-3727/45/25/253001
Shih, K. Y., & Locke, B. R. (2011). Optical and electrical diagnostics of the effects of conductivity on liquid phase electrical discharge. IEEE Transactions on Plasma Science, 39(3), 883-892. https://doi.org/10.1109/TPS.2010.2098052
?imon?icova, J., Kry?tofova, S., Medvecka, V., ?uri?ova, K., & Kali?akova, B. (2019). Technical applications of plasma treatments: current state and perspectives. Applied Microbiology and Biotechnology, 103, 5117-5129. https://doi.org/10.1007/s00253-019-09877-x
Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., Yang, X., He, B., & Li, C. (2012). Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Applied Surface Science, 258(12), 5031-5037.
https://doi.org/10.1016/j.apsusc.2012.01.075
Sun, T., Liu, E., Liang, X., Hu, X., & Fan, J. (2015). Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Applied Surface Science, 347, 696-705. https://doi.org/10.1016/j.apsusc.2015.04.162
Takahashi, M., Chiba, K., & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B, 111(6), 1343-1347. https://doi.org/10.1021/jp0669254
Tran, N., Drogui, P., & Brar, S. K. (2015). Sonochemical techniques to degrade pharmaceutical organic pollutants. Environmental Chemistry Letters, 13, 251-268. https://doi.org/10.1007/s10311-015-0512-8
Tran, Q. T. P., Chuang, Y.H., Tan, S., Hsieh, C.H., Yang, T.Y., & Tung, H.H. (2021). Degradation kinetics and pathways of isopropyl alcohol by microwave-assisted oxidation process. Industrial & Engineering Chemistry Research, 60(34), 12461-12473. https://doi.org/10.1021/acs.iecr.1c01464
Vaiano, V., Iervolino, G., Rizzo, L., & Sannino, D. (2017). Advanced oxidation processes for the removal of food dyes in wastewater. Current Organic Chemistry, 21(12), 1068-1073.
https://doi.org/10.2174/1385272821666170102163307
Vanraes, P., & Bogaerts, A. (2018). Plasma physics of liquids—A focused review. Applied Physics Reviews, 5(3). https://doi.org/10.1063/1.5020511
Wang, J., Liu, H., Ma, D., Wang, Y., Yao, G., Yue, Q., Gao, B., Wang, S., & Xu, X. (2021). Degradation of organic pollutants by ultraviolet/ozone in high salinity condition: Non-radical pathway dominated by singlet oxygen. Chemosphere, 268, 128796. https://doi.org/10.1016/j.chemosphere.2020.128796
Wang, K., Xin, L., Zhang, Y., Qi, J., Zhu, Z., Wang, Y., Zhong, L., & Cui, P. (2024). Sustainable and efficient process design for wastewater recovery of cyclohexane/isopropyl alcohol azeotrope by extractive distillation based on multi-objective genetic algorithm optimization. Chemical Engineering Research and Design, 201, 593-602.
https://doi.org/10.1016/j.cherd.2023.12.004
Wang, W., Liu, S., Nie, L., Cheng, B., & Yu, J. (2013). Enhanced photocatalytic H 2-production activity of TiO2 using Ni(NO3)2 as an additive. Physical Chemistry Chemical Physics, 15(29), 12033-12039. https://doi.org/10.1039/c2cp43628k
Wang, X., Huang, Q., Ding, S., Liu, W., Mei, J., Luo, J., Lei, L., & He, F. (2020). Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment. Separation and Purification Technology, 240, 116659.
https://doi.org/10.1016/j.seppur.2020.116659
Williamson, J. M., Trump, D. D., Bletzinger, P., & Ganguly, B. N. (2006). Comparison of high-voltage AC and pulsed operation of a surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 39(20), 4400. https://doi.org/10.1088/0022-3727/39/20/016
Wu, C., Wang, X., Tang, Y., Zhong, H., Zhang, X., Zou, A., Zhu, J., Diao, C., Xi, S., & Xue, J. (2023). Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Based?Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie, 135(21), e202218599.
https://doi.org/10.1002/ange.202218599
Wu, H., Fan, J., Sun, Y., Liu, R., Jin, J., & Li, P. (2021). Removal of ammonia nitrogen and phenol by pulsed discharge plasma combined with modified zeolite catalyst. Journal of Environmental Management, 299, 113590. https://doi.org/10.1016/j.jenvman.2021.113590
Wu, L., Shi, S., Li, Q., Zhang, X., & Cui, X. (2019). TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. International Journal of Hydrogen Energy, 44(2), 720-728.
https://doi.org/10.1016/j.ijhydene.2018.10.214
Xu, Y., Wu, Y., Zhang, W., Fan, X., Wang, Y., & Zhang, H. (2018). Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates. Chemical Engineering Journal, 353, 626-634. https://doi.org/10.1016/j.cej.2018.07.090
Xu, Y., & Xu, R. (2015). Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 351, 779-793.
https://doi.org/10.1016/j.apsusc.2015.05.171
Yang, A., Kong, Z. Y., & Sunarso, J. (2023). Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater. Chemical Engineering Journal, 451, 138563. https://doi.org/10.1016/j.cej.2022.138563
Zammit, I., Vaiano, V., Iervolino, G., & Rizzo, L. (2018). Inactivation of an urban wastewater indigenous Escherichia coli strain by cerium doped zinc oxide photocatalysis. RSC Advances, 8(46), 26124-26132.
https://doi.org/10.1039/c8ra05020a
Zhang, B., Wang, S., Ma, Z., & Qiu, Y. (2019). Ni0-rich Ni/NiO nanocrystals for efficient water-to?hydrogen conversion via urea electro-oxidation. Applied Surface Science, 496, 143710. https://doi.org/10.1016/j.apsusc.2019.143710
Zhang, J., Zhang, W., Wang, J., Wu, T., Wang, J., Shuang, S., Zhang, Y., & Dong, M. (2024). Enhanced hydrogen production from methanol by liquid-phase array electrode plasma discharge. Energy Conversion and Management, 312, 118544. https://doi.org/10.1016/j.enconman.2024.118544
Zhang, X., Wang, J., Dong, X. X., & Lv, Y. K. (2020). Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 242, 125144.
https://doi.org/10.1016/j.chemosphere.2019.125144
Zhang, Y., Xin, Q., Cong, Y., Wang, Q., & Jiang, B. (2013). Application of TiO2 nanotubes with pulsed plasma for phenol degradation. Chemical Engineering Journal, 215, 261-268. https://doi.org/10.1016/j.cej.2012.11.045
Zhao, L., Sun, Y., Qiu, R., Sun, H., & Feng, J. (2022). Application of liquid film dielectric barrier discharge plasma reactor in the degradation of rhodamine B: Performance optimization, mechanism and pathways. Journal of Water Process Engineering, 50, 103231. https://doi.org/10.1016/j.jwpe.2022.103231
王昭權,「薄膜生物系統應用於光電產業廢水處理之研究」,嘉南藥理大學,民國102年。 https://ir.cnu.edu.tw/handle/310902800/27282
李昀恩,「以 LaFeO3/Black-TiO2 行光催化反應以去除甲苯及異丙醇之可行性探討」,國立中央大學,碩士論文,民國107年。
http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105326022
李豫弘,「探討半導體業之水資源回收再利用及處理分析-NDL 為例」,國立陽明交通大學,碩士論文,民國95年。
http://140.113.39.130/cdrfb3/record/nctu/#GT009366508
許欣潔,「 沸石吸附材料製備及其運用於水中有機污染物之去除」,嘉南藥理大學,碩士論文,民國97年。 https://ir.cnu.edu.tw/handle/310902800/9254
黃富昌,李俊福,謝福環,陳德鴻,張侑昌,蔡崇平和李昇雨,特殊有機廢溶劑純化再利用之研究,2008 台灣環境資源永續發展研討會論文集,2008年10月。http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=943306021
黃耀輝,「以光電化學反應處理含氯有機廢水之技術開發與應用」,國立成功大學,碩士論文,民國101年。
http://140.116.207.99/handle/987654321/129341
劉振揚,「 UASB 結合 BioNET 處理氨氮廢水之研究-以某光電廠有機廢水為例 」, 國立中央大學,碩士論文,民國110年。
http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=107356010
盧明俊,何冠賢,王淑宜和徐哲敏,利用電-芬頓程序處理含有機酸之廢水,嘉南學報 (科技類) 30 期: p. 75-84,2004。
https://ir.cnu.edu.tw/handle/310902800/21332
羅卓卿,「 應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究」,國立中山大學,碩士論文,民國97年。https://hdl.handle.net/11296/2jn9d3
指導教授 張木彬(Moo-Been Chang) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明