博碩士論文 111323142 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:13.59.173.30
姓名 陳文彥(Wun-Yan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於雙折射偏振干涉技術之高靈敏滾轉角位移量測
(High Sensitivity Roll Angle Measurement Based on Birefringent Polarization Interferometry)
相關論文
★ 外差光學式光柵干涉儀之研究★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展
★ 雷射干涉儀於共焦顯微系統之軸向定位控制★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度
★ 準共光程干涉術之新式大尺度定位平台之研究★ 波長調制外差散斑干涉術應用於角度量測之研究
★ 全場光強差動式表面電漿共振偵測技術★ 基於全內反射波長調制外差干涉術小角度測量
★ 新型波長調制外差光源應用於位移量測★ 疊紋式自動準直儀系統
★ 雙影像多視角結構光轉三維點資料技術發展★ 偏振式駐波干涉儀應用於位移量測
★ 雙共焦顯微鏡用於物體厚度量測★ 以電漿診斷工具進行太陽電池用矽薄膜製程開發
★ 基於全反射共光程偏振干涉術之折射率量測技術★ 點繞射干涉儀應用於透鏡之像差量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本研究提出一種基於雙光束偏振干涉技術的高靈敏滾轉角位移量測方法,專為精密滾轉角位移量測系統設計。該技術以雙折射晶體為核心元件,結合偏振元件與偏振相機構成的偏振干涉儀,能快速捕捉晶體姿態角變化引起的相位差。由於系統對相位差的高靈敏度,能精確檢測滾轉角的微小位移,並透過滾轉角位移與相位差變化的關係實現準確量測。
為進一步提升量測準確性,本研究設計了一種特殊的雙光束結構。考量到雙折射晶體的入射角位移可能導致相位差變化並影響滾轉角量測結果,系統利用雙光束入射角變化方向相反的特性,當入射角位移發生時,兩束光所引起的相位差變化呈現相反趨勢。藉由計算兩束光相位差的平均值,可有效抵消入射角位移引入的干擾,大幅提升滾轉角位移量測的準確性。
實驗結果顯示,該系統在入射角位移變化條件下能有效消除干擾,並驗證了系統的穩定性。同時,本研究針對潛在系統誤差進行了深入探討,並提出相應解決方案。解析度測試結果顯示,系統解析度達1.39 arcsec,展現出卓越的穩定性與可靠性。
此技術具備高靈敏度、體積小,並通過雙光束架構有效消除入射角位移干擾,實現滾轉角微小位移的高精度量測。該研究為精密量測技術提供了創新解決方案,具有廣泛的應用潛力。
摘要(英) This study introduces a highly sensitive roll angle displacement measurement method based on dual-beam polarization interferometry, designed for precision roll angle measurement systems. The method utilizes a birefringent crystal as the core component, integrated with polarization elements and a polarization camera to form a polarization interferometer. This setup rapidly captures phase differences caused by variations in the crystal′s angular orientation. Its high phase sensitivity enables precise detection of subtle roll angle displacements by leveraging the relationship between displacement and phase shift.
To improve accuracy, a dual-beam configuration is implemented. Since angular displacement of the incident light on the birefringent crystal may introduce phase shift variations, potentially interfering with roll angle measurements, the system uses the opposing phase shift trends of the two beams under incident angle changes. Calculating the average phase difference effectively cancels this interference, significantly enhancing measurement precision.
Experimental results confirm that the system mitigates the impact of incident angle variations on roll angle measurements and demonstrates excellent stability. Additionally, potential system errors are thoroughly analyzed, and solutions are proposed. The system achieves a resolution of 1.39 arcsec, exhibiting exceptional stability and reliability.
This technique combines high sensitivity, compact design, and the ability to suppress incident angle-induced interference via a dual-beam structure. It provides an innovative solution for precision metrology with extensive application potential.
關鍵字(中) ★ 滾轉角量測
★ 雙光束
★ 雙折射晶體
★ 偏振干涉解相技術
★ 偏振相機
關鍵字(英) ★ Roll measurement
★ dual beam
★ birefringent crystals
★ polarization interference
★ polarization camera
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1光點位移 2
1-2-2相位變化干涉 7
1-3 研究動機、目的與方法 10
1-4 論文架構 10
第二章 實驗原理 12
2-1 雙折射原理 12
2-1-1 雙折射與相位延遲 13
2-1-2 BC傾斜引入之相位差 15
2-1-3 BC於滾轉角變化下之瓊斯矩陣探討 17
2-1-4 線偏振光與圓偏振光入射BC所引入相位延遲之比較 19
2-2 偏振干涉解相法 22
2-3 適合滾轉角量測的區域選擇 27
2-4 雙光束滾轉角位移量測設計與滾轉角位移量測 29
2-5 小結 33
第三章 系統架構 34
3-1 系統設計 34
3-1-1 光學元件 34
3-1-2 偏振相機 36
3-2 光學系統設計 37
3-3光強度訊號處理 39
3-4 實驗步驟 39
3-5 小結 43
第四章 實驗結果與討論 44
4-1 系統調整 44
4-2 量測實驗 46
4-2-1 靈敏度比較 46
4-2-2 微小滾轉位移實驗 47
4-2-3 入射角干擾下的系統準確性 49
4-3 系統性能 53
4-3 小結 55
第五章 誤差分析 56
5-1 系統誤差 56
5-1-1偏振相機之偏振誤差探討 57
5-1-2入射光偏振橢圓度之影響 60
5-1-3入射角不同的情況 62
5-1-4解相的四分之一波片非45之影響 64
5-1-5 基於呂薩加圓之滾轉角量測系統靈敏度與解析度分析 68
5-2 小結 70
第六章 結論與未來展望 71
6-1 結論 71
6-2 未來展望 72
參考文獻 73
參考文獻 [1] C. S. Liu, J. J. Lai, and Y. T. Luo, “Design of a measurement system for six-degree-of freedom geometric errors of a linear guide of a machine tool,” Sensors, 19(1), 5 (2018).
[2] Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers Eng., 92, 94 (2017).
[3] 黃智達,工具機運動-垂直度的量測與計算,財團法人精密機械研究發展中心,2018。
[4] J. Qi, Z. Wang, J. H. Huang, B. Yu, J. Gao, and S. Donati, “Note: enhancing the sensitivity of roll-angle measurement with a novel interferometric configuration based on waveplates and folding mirror,” Rev. Sci. Instrum., 87(3), 036106 (2016).
[5] S. Wu, X. Li, W. Li, and J. Si, “Non-contact and fast measurement of small roll angle using digital shearography,” Opt. Lasers Eng., 150, 106846 (2022).
[6] T. Jin, G. Xia, W. Hou, Y. Le, and S. Han, “High resolution and stability roll angle measurement method for precision linear displacement stages,” Rev. Sci. Instrum., 88(2), 023102 (2017).
[7] C. M. Wu and Y. T. Chuang, “Roll angular displacement measurement system with microradian accuracy,” Sens. Actuators A, 116(1), 145-149 (2004).
[8] Y. F. Le, W. M. Hou, K. Hu, and K. Shi, “High-sensitivity roll-angle interferometer,” Opt. Lett., 38(18), 3600-3603 (2013).
[9] S. Tang, Z. Wang, J. Gao, and J. Guo, “Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer,” Rev. Sci. Instrum., 85(4), 045110 (2014).
[10] S. Tang, Z. Wang, M. Li, W. Zhang, F. Yang, and X. Zhang, “Note: A small roll angle measurement method with enhanced resolution based on a heterodyne interferometer,” Rev. Sci. Instrum., 86(9), 096104 (2015).
[11] S. R. Gillmer, X. Yu, C. Wang, and J. D. Ellis, “Robust high-dynamicrange optical roll sensing,” Opt. Lett., 40(11), 2497-2500 (2015).
[12] J. Huang, Z. Wang, J. Gao, H. Qi and J Qi, “A high-precision measurement of small roll angular displacements based on AOMs and its error impact analysis,” Meas. Sci. Technol., 28(10), 105204 (2017).
[13] S. Zhou, V. Le, Q. Mi, and G. Wu, “Grating-corner-cube-based roll angle sensor,” Sensors, 20(19), 5524 (2020).
[14] Y. Saito, Y. Arai, and W. I. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuators A, 150(1), 175-183 (2009).
[15] 許敬澤。「雙光束偏振干涉術應用於滾轉角位移量測」。碩士論文,國立中央大學光機電工程研究所,2022。
[16] Y. Fan, Z. Lou, Y. Huang, and K. C. Fan, “Self-compensation method for dual-beam roll angle measurement of linear stages,” Opt. Express, 29(17), 26340-26352 (2021).
[17] Y. Cai, B. Yang, and K. C. Fan, “Robust roll angular error measurement system for precision machines,” Opt. express, 27(6), 8027-8036 (2019).
[18] Y. S. Zhai, Z. F. Zhang, Y. L. Su, X. J. Wang, and Q. B. Feng, “A high-precision roll angle measurement method,” Optik (Stuttg.), 126(24), 4837-4840 (2015).
[19] T. Zhang, Q. Feng, C. Cuiand, and B. Zhang, “Research on error compensation method for dual-beam measurement of roll angle based on rhombic prism,” Chin. Opt. Lett., 12(7), 071201 (2014).
[20] J. Qi, Z. Wang, J. Huang, Q. Wang, & J. Gao, “Heterodyne interferometer with two parallel-polarized input beams for high-resolution roll angle measurement,” Opt. Express, 27(10), 13820-13830 (2019).
[21] T. Jin, G. Xia, W. Hou, Y. Le, and S. Han, “High resolution and stability roll angle measurement method for precision linear displacement stages,” Rev. Sci. Instrum., 88(2), 023-102 (2017).
[22] S. J. Wu, J. Yang, W. X. Li, F. Wi, and M. L. Dong, “Precision roll angle measurement based on digital speckle pattern interferometer,” Meas. Sci. Technol., 30(1), 045005 (2019).
[23] S. O. Kasap 著,黃俊達等譯,光電子與光子學-原理與應用,台灣培生教育出版股份有限公司出版,2003。
[24] E. Hecht, “OPTICS,” Addison-Wesley, 4th Edition, 354 (2002).
[25] W. H. Chen, W. K. Kuo, S. L. Huang, and Y. T. Huang, “On-wafer 2D electric-field-vector 75 mapping using one-beam electro-optic probing technique,” IEEE CLEO. Optica Publishing Group, CFB1 2000.
[26] C. H. Hsieh, C. C. Tsai, H. C. Wei, L. P. Yu, J. S. Wu, and C. Chou, “Determination of retardation parameters of multiple-order wave plate using a phase-sensitive heterodyne ellipsometer,” Appl. Opt., 46(23), 5944-5950 (2007).
[27] H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, “Development of an angular displace-ment measurement technique through birefringence heterodyne interferometry,” Opt. Express, 24(7), 6802-6813 (2016).
[28] A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley, 152 (2003).
[29] 石英晶體折射率 http://www.u-photonics.com/Quartz.html
[30] M. Zou, “Analyses of Jones matrix of polarized-light interference,” College Physics. 27(10), 10-30 (2008).
[31] 黃衍介著,近代實驗光學,台灣東華書局股份有限公司出版,2011。
[32] 杜宜亮。「應用瞬間相位移干涉術於表面形貌量測」。碩士論文,國立成功大學機械工程學系碩博士班,2008。
[33] 偏振相機感光元件 (Polarization Image Sensor-Sony IMX250MYR).
https://www.sony-semicon.co.jp/e/products/IS/industry/product/polarization.html
[34] 宋瑋益。「基於雙折射偏振干涉術之滾轉角量測技術」。碩士論文,國立中央大學光機電工程研究所,2021。
[35] 偏振相機 BFS-U3-51S5P-C (Edmund Optics).
https://www.edmundoptics.com.tw/p/bfs-u3-51s5p-c-usb3-blackflyreg-s-polarization camera/41357/
[36] LabVIEW (National Instruments).
https://www.ni.com/getting-started/labview-basics/zht/environment
[37] S. G. Kwak, and J. H. Kim, “Central limit theorem: the cornerstone of modern statistics. Korean journal of anesthesiology,” Korean J. Anesthesiol., 70(2), 144-156 (2017).
[38] R. J. Moffat, “Describing the uncertainties in experimental results. Experimental thermal and fluid science,” Exp. Therm. Fluid Sci., 1(1), 3-17 (1988).
[39] C. Lane, D. Rode, and T. Rosgen, “Calibration of a polarization image sensor and investigation of influencing factors,” Appl. Opt., 61(6), C37-C45 (2022).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明