博碩士論文 109326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.190.158.12
姓名 蘇崇毅(Chung-Yi Su)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2021及2022年鹿林山區與台中市區氣膠化學特性與光學效應
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-12以後開放)
摘要(中) 本文探討2021年9與10月、2022年2至3月在鹿林山區、以及2021年12月於臺中市區量測氣膠的水溶性無機離子與碳成分。
鹿林山區春季受境外傳輸生質燃燒 (Biomass Burning, BB) 煙團影響,氣膠濃度上升,以SO42-濃度最高,推論主要是來自人為排放,部分來自BB貢獻。臺中市區冬季高濃度期間NO3-濃度最高,早上上班時段有來自固定源和交通排放的影響,中午時段光化學反應有貢獻,夜間NO3-濃度可能來自N2O5水解或車輛排放NOx轉化。臺中市區與鹿林山區的氣膠碳成分以一次有機碳居多,推論分別來自燃燒污染源與BB煙團傳輸。以Revised IMPROVE公式估算鹿林山區大氣氣膠消光係數顯示BB煙團傳輸期間有機物及元素碳占比高,臺中市區有較高的硝酸銨貢獻,這些化學成分都對太陽輻射削減影響重大。以多元迴歸方程式模擬鹿林山區與臺中市區氣膠光學厚度得出影響因子為臭氧、相對溼度與SO2。結合受體模式正矩陣因子法和潛在源貢獻因子法解析鹿林山區2018-2022年春季PM2.5化學成分,依貢獻比例高低得出BB來源、NOx轉化、地殼元素與海鹽、谷風,並分別追溯出高頻率來源位置。以氣膠特徵比OC/EC、Char-EC/Soot-EC與NO3-/SO42-,推論2003-2021年秋季受到來自燃煤燃燒源影響較生質燃燒大,2003-2022年春季則是受到生質燃燒明顯影響。
摘要(英) This study conducted aerosol measurements during September–October 2021 and February–March 2022 in the Lulin Mountain region, and in December 2021 in Taichung City, analyzing water-soluble inorganic ions (WSIIs) and carbonaceous components.
In spring, the Lulin Mountain region experienced elevated aerosol concentrations influenced by transboundary biomass burning (BB) plumes. SO?2? had the highest concentration, attributed primarily to anthropogenic emissions, with partial contributions from BB. During winter in Taichung City, NO?? showed the highest concentrations during high-pollution episodes. Stationary sources and traffic emissions influenced NO?? levels during morning rush hours, while photochemical reactions contributed at midday, and nighttime NO?? levels likely resulted from N?O? hydrolysis or traffic emissions NOx. Carbonaceous aerosols in both Taichung City and Lulin Mountain were dominated by primary organic carbon, suggesting contributions from combustion pollution sources in the city and BB plumes in the mountain region. Using the Revised IMPROVE formula, the aerosol extinction coefficient in the Lulin Mountain region revealed high contributions of organic matter and elemental carbon (EC) during BB plume transport, while ammonium nitrate contributed significantly in Taichung City. These chemical components had a substantial impact on solar radiation attenuation. A multiple regression model for aerosol optical depth identified ozone, relative humidity, and sulfur dioxide as major influencing factors in both regions. Combining Positive Matrix Factorization and Potential Source Contribution Function analyses, PM2.5 chemical compositions in the Lulin Mountain region during spring 2018–2022 were attributed to BB sources, NO? transformations, crustal elements with sea salt, and valley winds, with high-frequency source locations identified for each factor. Characteristic aerosol ratios such as OC/EC, Char-EC/Soot-EC, and NO??/SO?2? indicated that autumn (2003–2021) was more influenced by coal combustion sources compared to BB, whereas spring (2003–2022) was predominantly impacted by BB.
關鍵字(中) ★ 高山與都市氣膠
★ 鹿林山區與臺中市區
★ 氣膠光學特性
★ 污染源推估
關鍵字(英) ★ Mountain and urban aerosols
★ Lulin Mountain region and Taichung City
★ aerosol optical properties
★ pollution source attribution
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒 3
2.2 氣膠傳輸特性 4
2.3 氣膠化學特性 6
2.3.1 氣膠碳成分 6
2.3.2 WSIIs 8
2.4 氣膠光學特性 11
第三章 研究方法 13
3.1研究架構 13
3.2採樣地點與採樣週期 14
3.3採樣儀器 17
3.4採樣濾紙選擇及前處理 20
3.4.1 儀器與濾紙配置 20
3.4.2 濾紙前處理 22
3.4.3 樣本運送與保存 22
3.5樣本分析方法 24
3.5.1 樣本質量濃度秤重 24
3.5.2 氣膠碳成分分析 25
3.5.3 WSIIs分析 28
3.5.4 氣膠微粒揮發成分補賞方法 31
3.6判別BB的發生與來源 34
3.6.1 美國太空總署 (NASA) 自然災害網 34
3.6.2 美國太空總署全球火災監測中心 (GFMC) 34
3.6.3 氣流軌跡模式 (NOAA HYSPLIT) 35
3.7 PSCF 36
3.8 PMF概要 38
3.8.1 輸入資料處理 38
3.9 Revised IMPROVE公式模擬計算大氣氣膠消光係數 (bext) 44
3.10 NOAA 氣膠觀測系統 47
3.10.1 積分式散光儀 (TSI Model 3563 Integrating Nephelometer) 48
3.10.2 微粒碳吸收光度計 (PSAP) 50
第四章 結果與討論 54
4.1 2021-2022年鹿林山區與臺中都市高、平常濃度氣膠化學成分探討 54
4.1.1 2021-2022年鹿林山區與臺中市區氣膠化學成分時間變化 54
4.1.2 2021-2022年鹿林山區氣流軌跡來向 66
4.1.3 2021-2022年鹿林山區氣流軌跡類型與臺中市區高、平常濃度氣膠化學成分及特徵比值 71
4.1.4 2021-2022年鹿林山區與臺中市區ㄧ次和二次有機碳濃度與占比差異 85
4.1.5臺中市區高濃度事件及NO3-濃度和占比增高原因 90
4.2 2021-2022年鹿林山區高山與臺中都市氣膠光學特性 95
4.2.1 鹿林山區氣膠化學成分與大氣bext 95
4.2.2 採樣期間春季鹿林山區與冬季臺中市區的AOD值與多元迴歸分析 100
4.3 解析鹿林山區春季近5年 (2018-2022年) 污染源因子氣流軌跡 107
4.4 探討鹿林山區歷年 (2003-2022年) 氣膠化學成分與特徵比值變化趨勢 120
4.4.1 鹿林山區秋季氣膠濃度、化學成分與特徵比值變化趨勢 120
4.4.2 鹿林山區春季氣膠濃度、化學成分與特徵比值變化趨勢 124
第五章 結論 129
5.1 結論 129
5.2 建議 131
第六章 參考文獻 132
附錄一 秋季鹿林山區採樣期間氣流軌跡圖 141
附錄二 春季鹿林山區採樣期間氣流軌跡圖 149
附錄三 春季採樣期間火點圖 166
附錄四 春季鹿林山區與冬季臺中市區採樣期間AOD多元回歸計算資料 168
附錄五 口試委員意見與回覆 170
參考文獻 Ackerman, A., Toon, O., Stevens, D., Heymsfield, A., V., V. R., Welton, E., 2000. Reduction of tropical cloudiness by soot. Science 288, 1042-1047.
Adam, M. G., Chiang, A.W. J., Balasubramanian, R., 2020. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environmental Pollution 257, 113425.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., Kunasek, S. A., 2009. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate. Atmospheric Chemistry and Physics 9, 5043-5056.
Andreae, M. O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966.
Arimoto, R., Duce, R. A., Savoie, D. L., Prospero, J. M., Talbot, R., Cullen, J. D., Tomza, U., Lewis, N. F., Ray, B. J., 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM?West A. Journal of Geophysical Research: Atmospheres 101, 2011-2023.
Asnbaugh, L. L., Malm, W. C., Sadeh, W. C., 1985. A residence time probability analysis of sulfur concentra~iuns at grand canyon national park. Atmospheric Environment 19, 1263-1270.
Bhattarai, H., Tripathee, L., Kang, S., Chen, P., Sharma C. M., Ram, K., Guo, J., Rupakheti, M., 2022. Nitrogenous and carbonaceous aerosols in PM2.5 and TSP during pre-monsoon: Characteristics and sources in the highly polluted mountain valley. Journal of Environmental Sciences 115, 10-24.
Bhowmik, H.S., Naresh, S., Bhattu, D., Rastogi, N., Prevot, A. S. H., Tripathi, S. N., 2021. Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2.5 aerosol over five sites of Indo-Gangetic Plain. Atmospheric Pollution Research 12, 375-390.
Borgohain, A., Gogoi, M., Barman, N., Kundu, A., Banik, T., Kundu, S. S., Bhuyan, P. K., Aggarwal, S. P., 2023. Impact of Biomass Burning on Black Carbon and NO2 Over North Eastern Region of India Using Multi-satellite Observations. Journal of the Indian Society of Remote Sensing 51, 1605-1617.
Brown, S. G., Eberly, S., Paatero, P., Norris, G. A., 2015. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results. Science of The Total Environment 518-519, 626-635.
Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., An, Z. S., Fung, K. K., Watson, J. G., Zhu, C. S., Liu, S. X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Carslaw, K. S., Peter, T., Clegg, S. L., 1997. Modeling the composition of liquid stratospheric aerosols. Reviews of Geophysics 35, 125-154.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., J. R., J. E. H., Hofmann, D. J., 1992. Climate Forcing by Anthropogenic Aerosols. Science 255, 423-430.
Chen, P., Kang, S., Gul, C., Tripathee, L., Wang, X., Hu, Z., Li, C., Pu, T., 2020. Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. Journal of Environmental Sciences 90, 286-296.
Chen, W. R., Singh, A., Pani, S. K., Chang, S. Y., Chou, C. C. K., Chang, S. C., Chuang, M. T., Lin, N. H., Huang, C. H., Lee, C. T., 2021. Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke. Atmospheric Research 260, 105686.
Chen, Y., Bond, T. C., 2010. Light absorption by organic carbon from wood combustion. Atmospheric Chemistry and Physics 10, 1773-1787.
Chen, Y., Xie, S., Luo, B., Zhai, C., 2014. Characteristics and origins of carbonaceous aerosol in the Sichuan Basin, China. Atmospheric Environment 94, 215-223.
Cheng, Y., Yu, Q. Q., Liu, J. M., Du, Z. Y., Liang, L. L., Geng, G. N., Zheng, B., Ma, W.L., Qi, H., Zhang, Q., He, K. B., 2021. Strong biomass burning contribution to ambient aerosol during heating season in a megacity in Northeast China: Effectiveness of agricultural fire bans? Science of The Total Environment 754, 142144.
Chin, M., Kahn, R. A., Remer, L. A., Yu, H. B., Rind, D., Feingold, G., 2009. Atmospheric aerosol properties and climate impacts. Environmental Research. 28, 302-307.
Cho, C., Kim, S. W., Lee, M., Lim, S., Fang, W., Gustafsson, O., Andersson, A., Park, R. J., Sheridan, P.J., 2019. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmospheric Environment 212, 65-74.
Chou, C. C. K., Lee, C. T., Cheng, M. T., Yuan, C. S., Chen, S. J., Wu, Y. L., Hsu, W. C., Lung, S. C., Hsu, S. C., Lin, C. Y., Liu, S. C., 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics 10, 9563-9578.
Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., Green, M. C., 2004. Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54, 185-208.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment 8, 1185-1201.
Chuang, M. T., Lee, C. T., Chou, C. C. K., Lin, N. H., Sheu, G. R., Wang, J. L., Chang, S. C., Wang, S. H., Chi, K. H., Young, C. Y., Huang, H., Chen, H. W., Weng, G. H., Lai, S. Y., Hsu, S. P., Chang, Y. J., Chang, J. H., Wu, X. C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Cohen, M.D., Stunder, B. J. B., Rolph, G. D., Draxler, R. R., Stein, A. F., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077
Colbeck, I., Roy M. H., 1984. Ozone secondary aerosol visibility relationships in North-West England. Science of The Total Environment 34, 87-100.
Dai, J., Liu, Y., Wang, P., Fu, X., Xia, M., Wang, T., 2020. The impact of sea-salt chloride on ozone through heterogeneous reaction with N2O5 in a coastal region of south China. Atmospheric Environment 236. 117604
Day, M., Zhang, M., Pandis, S. N., 2015. Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment 112, 317-325.
Diamond, M. S., Director, H. M.,Eastman, R., Possner, A., Wood, R. 2020. Substantial cloud brighteningfrom shipping in subtropical lowclouds. AGU Advances, 1, e2019AV000111.
Donahue, N. M., Robinson, A. L., Pandis, S. N., 2009. Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmospheric Environment 43, 94-106.
Draxler, R. R., Hess, G. D., 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine 47, 295-308.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Fang, G. C., Lee, S. C., Lee, W. J., Cheng, Y., Lin, I. C., 2007. Characteristics of carbonaceous aerosol at Taichung Harbor, Taiwan during summer and autumn period of 2005. Environmental Monitoring and Assessment 131, 501-508.
Flaxbart, D., 1998. The beilstein system:? strategies for effective searching edited by Stephen R. Heller. Journal of the American Chemical Society 121, 1424-1424.
Frank, N. H., 2006. Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern U.S. cities. Journal of the Air & Waste Management Association 56, 500-511.
Gustafsson, O., Krusa, M., Zencak, Z., Sheesley, R. J., Granat, L., Engstrom, E., Praveen, P. S., Rao, P. S. P., Leck, C., Rodhe, H., 2009. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 323, 495-498.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., D. Simpson, M. C., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., ot?, A. S. H. P., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., Wildt, J., 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 9, 5155-5236.
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., Zhang, X., 2011. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research 11, 128-139.
Han, Y., Cao, J., Chow, J. C., Watson, J. G., An, Z., Jin, Z., Fung, K., Liu, S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 69, 569-574.
Han, Y. M., Lee, S. C., Cao, J. J., Ho, K. F., An, Z. S., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Huang, X., Qiu, R., Chan, C. K., Ravi Kant, P., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]=1.5. Atmospheric Research 99, 488-495.
Jafar, H. A., Harrison, R. M., 2021. Spatial and temporal trends in carbonaceous aerosols in the United Kingdom. Atmospheric Pollution Research 12, 295-305.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Khamkaew, C., Chantara, S., Janta, R., Pani, S. K., Prapamontol, T., Kawichai, S., Wiriya, W., Lin, N. H., 2016. Investigation of biomass burning chemical components over northern southeast asia during 7-SEAS/BASELInE 2014 campaign. Aerosol and Air Quality Research 16, 2655-2670.
Kim, Y. P., Seinfeld, J. H., 1995. Atmospheric gas–aerosol equilibrium: III. Thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Science and Technology 22, 93-110.
Kirchstetter, T. W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres 109, D21208.
Li, J., Posfai, M., Hobbs, P. V., & Buseck, P. R. 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108 (D13).
Laiman, V., Hsiao, T. C., Wang, Y. H., Young, L. H., Chao, H. R., Lin, T. H., Heriyanto, D. S., Chuang, H. C., 2022. Contributions of acidic ions in secondary aerosol to PM2.5 bioreactivity in an urban area. Atmospheric Environment 275, 119001.
Lee, C. T., Chuang, M. T., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, S. C., Wang, S. H., Huang, H., Chen, H. W., Liu, Y. L., Weng, G. H., Lai, H. Y., Hsu, S. P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Li, J., Zhang, Y., Wang, Z., Sun, Y., Fu, P., Yang, Y., Huang, H., Li, J., Zhang, Q., Lin, C., Lin, N. H., 2017. Regional impact of biomass burning in southeast asia on atmospheric aerosols during the 2013 seven south-east asian studies project. Aerosol and Air Quality Research 17, 2924-2941.
Louie, P., Watson, J., Chow, J., Chen, A., Sin, D., Lau, A., 2005. Seasonal characteristics and regional transport of PM in Hong Kong. Atmospheric Environment 39, 1695-1710
Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell, D. T., Chen, Y., Faluvegi, G., 2013. El Nino and health risks from landscape fire emissions in Southeast Asia. Nature Climate Change 3, 131-136.
Mukherjee, S., Dutta, M., Ghosh, A., Chatterjee, A., 2022. A year-long study on PM2.5 and its carbonaceous components over eastern Himalaya in India: Contributions of local and transported fossil fuel and biomass burning during premonsoon. Environmental Research 212, 113546.
Mwaniki, G. R., Rosenkrance, C., Wallace, W. H., Jobson, T. B., Erickson, M. H., Lamb, B. K., Hardy, R. J., Zalakeviciute, R., VanReken, T. M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Norris, G., Duval, R., Brown, S., Bai, S., 2014. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide. U.S. Environmental Protection Agency.
Olga, P., Valerii, K., Elena, K., Natalia, P., Guenter, E., Konstantinos, E., Evangelia, D., Dikaia, S., 2014. Aerosol in emissions of Siberian biomass burning: small-scale fire study. ProScience 1, 405-410.
Ou Yang, C. F., Lin, N. H., Sheu, G. R., Lee, C. T. and Wang, J. L. 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.
Pachon, J. E., Weber, R. J., Zhang, X., Mulholland, J. A., Russell, A. G., 2013. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmospheric Pollution Research 4, 14-21.
Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Wentworth, G. R., Michalski, G., Huang, X., Wang, Y., 2018. Source apportionment of aerosol ammonium in an ammonia-rich atmosphere: An isotopic study of summer clean and hazy days in urban beijing. Journal of Geophysical Research: Atmospheres 123, 5681-5689.
Pani, S. K., Lin, N. H., Chantara, S., Wang, S. H., Khamkaew, C., Prapamontol, T., Janjai, S., 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular southeast asia. Science of The Total Environment 633, 892-911.
Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez, A., Artinano, B., Matos, M., 2011. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment 45, 6121-6132.
Pitchford, M., Maim, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Polissar, A. V., Hopke, P. K., Harris, J. M., 2001. Source regions for atmospheric aerosol measured at barrow, Alaska. Environmental Science & Technology 35, 4214-4226.
Rastogi, N., Sarin, M., 2006. Atmospheric abundances of nitrogen species in rain and aerosols over a semi-arid region: sources and deposition fluxes. Aerosol and Air Quality Research 6, 406-417.
Reff, A., Eberly, S. I., Bhave, P. V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Salma, I., Varga, P. T., Vasanits, A., Machon, A., 2022. Secondary organic carbon in different atmospheric environments of a continental region and seasons. Atmospheric Research 278, 106360.
Schuster, G. L., Dubovik, O., Holben, B. N., 2006. Angstrom exponent and bimodal aerosol size distributions. Journal of Geophysical Research 111, D07207.
Sharma, S. K., Sharma, A., Saxena, M., Choudhary, N., Masiwal, R., Mandal, T. K., Sharma, C., 2016. Chemical characterization and source apportionment of aerosol at an urban area of central Delhi, India. Atmospheric Pollution Research 7, 110-121.
Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou Yang, C. F., Wang, S. H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Shan, Y., Zhu, Y., Qi, Y., Yang, Y., Mu, J., Liu, M., Li, H., Zhang, Ji., Nie, Y., Liu, Y., Zhao, X., Lingli, Z., Wang, Y., Li, Y., Shen, H., Zhang, Y., Wang, X., Huang, L., Wang, W., 2024. Insights into atmospheric trace gases, aerosols, and transport processes at a high-altitude station (2623 m a.s.l.) in Northeast Asia. Atmospheric Environment 326, 120482.
Singh, A., Chou, C. C., Chang, S. Y., Chang, S. C., Lin, N. H., Chuang, M. T., Pani, S. K., Chi, K. H., Huang, C. H., Lee, C. T., 2020. Long-term (2003-2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution 265, 114813.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J. D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Sun, H., Biedermann, L., Bond, T. C., 2007. Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. Geophysical Research Letters 34, L17813.
Tao, J., Surapipith, V., Han, Z., Prapamontol, T., Kawichai, S., Zhang, L., Zhang, Z., Wu, Y., Li, J., Li, J., Yang, Y., Zhang, R., 2020. High mass absorption efficiency of carbonaceous aerosols during the biomass burning season in Chiang Mai of northern Thailand. Atmospheric Environment 240, 117821.
Thepnuan, D., Chantara, S., Lee, C. T., Lin, N. H., Tsai, Y. I., 2019. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Science of The Total Environment 658, 708-722.
Wang, Y. Q., Zhang, X. Y., Draxler, R. R., 2009. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software 24, 938-939.
Veld, M., Alastuey, A., Pandolfi, M., Amato, F., Perez, N, Reche, C., Via, M., Minguillon, M. C., Escudero, M., Querol, X., 2021. Compositional changes of PM2.5 in NE Spain during 2009–2018: A trend analysis of the chemical composition and source apportionment. Science of The Total Environment 795, 148728.
Wu, K., Zhu, S., Liu, Y., Wang, H., Yang, X., Liu, L., Dabdub, D., Cappa, C. D., 2021. Modeling ammonia and its uptake by secondary organic aerosol over China. Journal of Geophysical Research: Atmospheres 126. e2020JD034109
Zhang, H., Hu, J., Qi, Y., Li, C., Chen, J., Wang, X., He, J., Wang, S., Hao, J., Zhang, L., Zhang, L., Zhang, Y., Li, R., Wang, S., Chai, F. 2017. Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. Journal of Cleaner Production, 149, 629-635.
Zhang, Y., Shoa, M., Lin, Y., Luan, S., Mao, N., Chen, W., Wang, M. 2012. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl. Atmospheric Environment 76, 189-199.
Zhang, Y., Peng, Y., Song, W., Zhang, Y. L., Ponsawansong, P., Prapamontol, T., Wang, Y., 2021. Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand. Atmospheric Environment 260, 118544.
Zheng, N., Song, S., Jin, X., Jia, H., Wang, Y., Ji, Y., Guo, L., Li, P., 2019. Assessment of carbonaceous aerosols at mount Tai, North China: Secondary formation and regional source analysis. Aerosol and Air Quality Research 19, 1708-1720.
Zong, Z., Wang, X., Tian, C., Chen, Y., Fu, S., Qu, L., Ji, L., Li, J., Zhang, G., 2018. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmospheric Research 203, 207-215.
Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, Q., Wang, Y., 2018. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research 201, 235-246.
邱鈞煦 (2019)。2016至2017年鹿林山長程傳輸氣膠特性分析。中央大學環工所,碩士論文。
林寬昱 (2020)。2019年鹿林山背景生質燃燒傳輸氣膠特性及其對大氣光學影響。中央大學環工所,碩士論文。
許博鈞 (2021)。2019及2020年高山與都市環境氣膠化學及光學特性。中央大學環工所,碩士論文。
莊鏡薰 (2023)。2020 ~ 2021年鹿林山氣流軌跡類型對氣膠化學及光學特性影響。中央大學環工所,碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明