博碩士論文 110353023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:912 、訪客IP:18.224.3.26
姓名 陳柏豪(Chen,Po-Hao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究
(Study on the Improvement of Inner Surface Quality of Stainless Steel Tubes Using Mixed-Gas Electrolytic Plasma Polishing Method)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
★ 深切緩進電化學放電加工於石英玻璃之創成特性研究★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光
★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 隨著科技的進步,使得各產業的產品都在追求小而精密的發展,在其中不銹鋼管亦在不同產業有著其重要的地位,其產業包含建築、醫療、食品加工及化工等行業。為此本實驗提出了一個針對不銹鋼管內拋光之裝置,並加入電解混氣裝置輔助加工,以不同的不銹鋼管工件參數(內徑、長度)、加工電壓、電解液流量探討加工結果,探討加工參數對不銹鋼管內表面的影響,得到較佳之表面粗糙度。
研究流程方面,首先以工件內徑 7 mm、長度 20 mm之不銹鋼管進行初始實驗,使用電解式混氣法在電解液中混入氣泡,並以電源供應器控制混氣量,並控制電解液流動之流量,最終嘗試出電解電漿拋光方法。實驗結果發現,加工後的工件表面拋光並不均勻,在工件的入水口端表面明顯較為光滑且表面粗糙度低,但在出水口端的表面較為霧面且表面粗糙度較高。電解液流量對於管內電解電漿拋光扮演重要的角色,不同的工件參數(內徑、長度)、加工電壓,每種參數會有可成功引弧之電解液流量。以不銹鋼管內徑 7 mm、長度 20 mm為例,其能得到最佳表面粗糙度,其入水口端可達 0.047 μm至 0.065 μm,表面品質改善率達 92.0 % 至 88.9 %。
摘要(英) With the advancement of technology, industries are striving for smaller and more precise product development. Stainless steel tubes, in particular, hold a significant position across various industries, including construction, medical, food processing, and chemical sectors. This experiment proposes a device for internal polishing of stainless steel tubes, incorporating an electrolytic gas-mixing device to assist in the process. It explores the effects of different parameters—such as the inner diameter and length of the stainless steel tubes, processing voltage, and electrolyte flow rate—on the polishing results, aiming to achieve improved surface roughness.
In terms of the research process, initial experiments were conducted using stainless steel tubes with an inner diameter of 7 mm and a length of 20 mm. The electrolytic gas-mixing method was applied by introducing bubbles into the electrolyte, with the gas volume controlled via a power supply and the electrolyte flow rate precisely regulated. Ultimately, the method of electrolytic plasma polishing was tested. The experimental results revealed that the polished surface of the workpieces was not uniform. The surface near the water inlet was significantly smoother and had lower surface roughness, while the surface near the water outlet appeared matte and had higher surface roughness. Electrolyte flow rate plays a critical role in internal electrolytic plasma polishing, as each combination of workpiece parameters (inner diameter, length) and processing voltage requires a specific electrolyte flow rate to successfully ignite the arc.
For example, with a stainless steel tube of 7 mm inner diameter and 20 mm length, the optimal surface roughness achieved at the water inlet ranged from 0.047 μm to 0.065 μm, with surface quality improvement rates of 92.0% to 88.9%.
This method demonstrates the potential to significantly enhance the internal surface quality of stainless steel tubes, especially with careful control of electrolyte flow and processing parameters.
關鍵字(中) ★ 電解電漿拋光
★ 管內加工
★ 電解混氣
★ 不銹鋼
關鍵字(英) ★ Electrolytic plasma polishing
★ Inner Tube machining
★ Electrolytic Gas mixing
★ Stainless steel
論文目次 摘要 I
Abstract II
目錄 IV
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 4
1-3-1 電解電漿拋光相關論文 4
1-3-2 內表面電解電漿拋光 9
1-3-3 電化學混氣相關論文 10
1-4 論文架構 12
第一章 緒論 12
第二章 基礎理論 12
第三章 實驗設備與方法 12
第四章 結果與討論 12
第五章 結論 12
第二章 基礎理論 13
2-1 電解產氣 13
2-1-1 電解產氣原理 13
2-1-2 電解產氣實驗原理 14
2-2 電解電漿拋光 15
2-2-1 電解電漿拋光原理 15
2-2-2 管內電解電漿拋光實驗原理 17
第三章 實驗設備與方法 19
3-1 實驗方法 19
3-2 實驗相關設備 21
3-2-1 線切割放電加工機 21
3-2-2 電解電漿拋光固定工件之鐵氟龍治具 21
3-2-3 電解電漿拋光裝置之不銹鋼治具 22
3-2-4 電解混氣裝置 23
3-2-5 超音波清洗機 24
3-2-6 直流電源供應器 25
3-2-7 數位示波器 26
3-2-8 高頻電流探棒 27
3-2-9 溫控電解液槽 27
3-2-10 夾鉗式流量感測器 28
3-2-11 控流球閥 29
3-2-12 攜帶式表面粗糙度測定機 29
3-2-13 XPS光電子能譜儀 30
3-2-14 低真空掃描式電子顯微鏡(LV-SEM) 31
3-2-15 高解析雙數型聚焦離子束系統 (FIB) 32
3-2-16 2.5次元影像測量儀 34
3-3 實驗材料 34
3-3-1 不鏽鋼管 34
3-3-2 電極 36
3-3-3 電解液 38
3-4 實驗流程與方法 39
3-4-1 混氣電解電漿管內拋光加工流程 41
第四章 結果與討論 44
4-1 不銹鋼管使用於一般拋光方法 44
4-2 電解液流量對於加工的影響 46
4-3 加工過程電解電漿拋光之示波器電流波形圖 46
4-3-1 初始引弧之波形圖 46
4-3-2 有無混氣之加工電流波形圖 48
4-4 加工電壓對不銹鋼管之表面粗糙度影響 49
4-4-1 不銹鋼管內徑 7 mm 49
4-4-2 不銹鋼管內徑 5 mm 54
4-5 長度變化對於不銹鋼管加工影響 57
4-5-1 不銹鋼管內徑 7 mm 57
4-5-2 不銹鋼管內徑 5 mm 66
4-6 表面形貌觀察與元素分析 67
4-6-1 LV-SEM之表面形貌觀察 67
4-6-2 使用 FIB 觀察氧化 70
4-6-3 XPS元素分析 75
第五章 結論 88
未來展望 90
參考文獻 91
參考文獻 [1] E.V. Parfenov, R.G. Farrakhov, V.R. Mukaeva, A.V. Gusarov, R.R. Nevyantseva, A. Yerokhin, W. Adamitzki, “Electric field effect on surface layer removal during electrolytic plasma polishing”, Surface & Coatings Technology, Vol.304, pp. 1329-1340, 2016.
[2] K. Nestler, F. Bottger-Hiller, W. Adamitzki, G. Glowa, H. Zeidler, A. Schubert, “Plasma Electrolytic Polishing – an Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range” , Procedia CIRP, Vol.42, pp. 503-507, 2016.
[3] H. Zeidler, F. Boettger-Hiller, J. Edelmann, A. Schubert, “Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing” , Procedia CIRP, Vol.42, pp. 83-87, 2016.
[4] O. Kroning, H.P. Schulze, C. Kranhold, M. Herzig, H. Zeidler ,“Investigation of the ignition phase in electrolytic plasma polishing under different starting conditions” , Procedia CIRP, Vol.95, pp. 993-998, 2020.
[5] P.N. Belkin, S.A. Kusmanov, E.V. Parfenov, “Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces” , Applied Surface Science Advances, Vol.1, 100016, 2020.
[6] A.Spica, J. Roche, L. Arurault, M. Horville, J. Rolet, “Evolution of model roughness on quasi-pure aluminum during plasma electrolytic polishing” , Surface & Coatings Technology, Vol.428, 127839, 2021.
[7] G. Ji, H. Sun, H. Duan, D. Yang, J. Sun, “Effect of electrolytic plasma polishing on microstructural evolution and tensile properties of 316L stainless” , Surface & Coatings Technology, Vol.420, 127330, 2021.
[8] S. An, R. Foest, K. Fricke, H. Riemer, M. Frohlich, A. Quade, J. Schafer,
K.D. Weltmann, H. Kersten, “Pretreatment of cutting tools by plasma electrolytic polishing (PEP) for enhanced adhesion of hard coatings” , Surface & Coatings Technology, Vol.405, 126504, 2021.
[9] K. Navickait?, K. Nestler, F. B.Hiller, C. Matias, A. Diskin, O. Golan,
A. Garkun, E. Strokin, R. Biletskiy, D. Safranchik, H. Zeidler, “Efficient polishing of additive manufactured titanium alloys” , Procedia CIRP, Vol.42, pp. 83-87, 2016.
[10] C. Zhou, N. Qian, H. Su, Z. Zhang, W. Ding, J. Xu, “Effect of energy distribution on the machining efficiency and surface morphology of Inconel 718 nickel-based superalloy using plasma electrolytic polishing” , Surface & Coatings Technology, Vol.441, 128506, 2022.
[11] H. Zeidler, T. Bottger, S. Schroder, M. Schneider,C. Lammel, F. Sahr,
J. Tardelli, L. Exbrayat, “Analysis of Plasma-Electrolytic Polishing Process Initiation” , Procedia CIRP, Vol.108, pp. 782-786, 2022.
[12] K. Navickait?, T. Bottger, K. Nestler, M. Penzel, S. Schroder, V. Stepputat, F. B. Hiller, H. Zeidler, “Electrolyte optimisation for effective plasma electrolytic polishing of brass” , Results in Surfaces and Interfaces, Vol.12, 100133, 2023.
[13] Y. Zou, S. Wang, G. Chen, Y. Wang, K. Zhang, C. Zhang, D. Wei,
J. Ouyang, D. Jia, Y. Zhou, “Optimization and mechanism of precise finishing of TC4 alloy by plasma electrolytic polishing” , Surface & Coatings Technology, Vol.467, 129696, 2023.
[14] D. Yang, H. Sun, J. Wang, G. Ji, H. Duan, Y. Xiang, Y. Fan, “The formation and stripping mechanism of oxide film on Ti6Al4V alloy surface during electrolytic plasma polishing” , Procedia CIRP, Vol.478, 130469, 2024.
[15] F. An, L. Zhang, S. J. Na, “Effects of plasma electrolytic polishing on the surface and mechanical properties of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si specimen fabricated by laser powder bed fusion” ,Journal of Manufacturing Processes, Vol.131, pp. 283-296, 2024.
[16] Z. Lv, L. Wang, X. Hu, Z. Bu, Y. Li, “Leveling mechanism of plasma electrolytic polishing of titanium alloy with aqueous fluoride-type solution” ,International Journal of Electrochemical Science, Vol.19, Issue 9, 100749, 2024.
[17] M. Cornelsen, C. Deutsch, H. Seitz, “Electrolytic Plasma Polishing of Pipe Inner Surfaces” , MDPI, , 2017.
[18] Z.Y. Li, X.T. Wei, W.W. Lu, Q.W. Cui, “Comparative analysis of flow field in mixed and nonmixed gas electrochemical machining for aero-engine turbine blade cooling holes” , Applied Mechanics and Materials, Vol.868, pp. 166-171, 2017.
[19] J.C. Hung, J.H. Liu, Z.W. Fan, “Fabrication of microscale concave and grooves through mixed-gas electrochemical jet machining” , Precision Engineering, Vol.55, pp. 310-321, 2019.
[20] Y. Zhou, Di, Z. Xu, X. Zhang, “Effects of Gas-mixed Electrolyte on Leveling Ability of Electrochemical Machining of (γ+α2+B2) TiAl Intermetallic” , International Journal of Electrochemical Science, Vol.15,Issue 7, pp. 6314-6329, 2020.
[21] P.J. Yang, J.C. Hung, “On high resolution bubbly flow generator for gas-mixed micro electrochemical machining” , Journal of Manufacturing Processes, Vol.121, pp. 269-288, 2024.
指導教授 洪榮洲 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明