博碩士論文 109323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.144.176.149
姓名 許博欽(Po-Chin Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於三個異種鋼鋁混合板在鹽霧腐蝕下自衝鉚接(SPR)接頭失效機制的研究
(Failure Mechanisms of Self-Piercing Riveting Joints under Salt Spray Corrosion of Three Dissimilar Steel-Aluminum Hybrid Sheets)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-30以後開放)
摘要(中) 本研究探討了鹽霧環境對三個異種自衝鉚接(SPR, Self-Piercing Riveting)接頭的質量和強度影響。在鹽霧腐蝕條件下,對SPR試樣進行了機械測試和失效機制分析。基於SPR鉚接技術具有高強度、快速加工以及適合異材質的優勢,試片進行了以下測試。搭接剪切測試結果顯示,在經過1176小時的鹽霧腐蝕後,三個異種SPR接頭的峰值負載與能量吸收值變化如下:DP780分別下降了24.67%和16.48%,失效模式為模式A(ILF, Interlocking Failure);DP980下降了15.55%和22.81%,失效模式為模式B(mixed ILF and TST, Top Shear Tearing);1180MS下降了7.14%和27.11%,失效模式為模式B(mixed ILF and TST)。此外,疲勞測試結果顯示,在經過1176小時的鹽霧腐蝕後,在2.25 kN的疲勞負載下,DP780、DP980和1180MS的疲勞壽命分別下降了68.3%、61.3%和58.9%。此外,在無鹽霧(0小時)條件和高疲勞負載(4.5 kN)條件下,觸發了失效模式α,定義為「鉚釘孔周圍出現裂紋,導致基板失效」;相反,在長期鹽霧(1176小時)處理和低疲勞負載(1.75 kN)條件下,觸發了失效模式γ,定義為「基板重疊區域出現裂紋,導致基板失效」。在鹽霧和疲勞負載的混合條件下(0小時,1.75kN或1176小時,2.5kN),可能觸發模式β,定義為「鉚釘孔邊緣出現裂紋,導致基板失效」。本研究的主要貢獻包括提供有益的見解,分析在搭接剪切和疲勞負載及鹽霧環境暴露下,不同鋼鋁混合板材(DP780、DP980、1180MS)SPR接頭的失效機制。本研究闡明了不同接頭、鹽霧腐蝕、機械性能及失效機制之間的相互關係。這些研究結果為在汽車應用中選用不同板材進行SPR接頭設計提供了有價值的參考標準,從而降低汽車行業的成本。通過實際驗證,本研究闡明了異種接頭、鹽霧腐蝕、機械性能與失效機制之間的相互關係。
摘要(英) This study investigates the effects of salt spray environments on the quality and strength of three different types of dissimilar Self-Piercing Riveting (SPR) joints. Mechanical testing and failure mechanism analysis were conducted on SPR specimens under salt spray corrosion conditions. Taking advantage of the high strength, rapid processing, and suitability for dissimilar materials offered by SPR technology, the specimens underwent the following tests. The lap shear test results showed that after 1176 hours of salt spray corrosion, the peak load and energy absorption values of the three dissimilar joints changed as follows: DP780 decreased by 24.67% and 16.48%, with failure mode identified as Mode A (ILF, interlocking failure); DP980 decreased by 15.55% and 22.81%, with failure mode identified as Mode B (mixed ILF and TST, top shear tearing); and 1180MS decreased by 7.14% and 27.11%, with failure mode identified as Mode B (mixed ILF and TST). In addition, the fatigue test results showed that after 1176 hours of salt spray corrosion, under a fatigue load of 2.25 kN, the fatigue life of DP780, DP980, and 1180MS decreased by 68.3%, 61.3%, and 58.9%, respectively. Furthermore, under no corrosion (0 hours) treatment and high fatigue load conditions (4.5 kN), failure mode α was triggered, defined as "cracks initiated around rivet holes causing base sheet failure." In contrast, under long-term salt spray (1176 hours) treatment and low fatigue load conditions (1.75 kN), failure mode γ was triggered, defined as "cracks initiated at the substrate overlap area causing base sheet failure." Under mixed conditions of salt spray and fatigue load (0 hours, 1.75 kN or 1176 hours, 2.5 kN), failure mode β may be triggered, defined as "cracks initiated at the edge of the rivet hole causing base sheet failure." The main contributions of this study includes providing beneficial insights on the failure mechanisms of dissimilar steel-aluminum hybrid sheets (DP780, DP980, 1180MS) SPR joints under lap shear and fatigue loads with salt environment exposures. This study elucidates the interrelationships among dissimilar joints, salt spray corrosion, mechanical properties, and failure mechanisms. The findings offer valuable benchmarks for material selection process in implementing dissimilar sheets SPR joint for automotive applications, thereby reducing costs in the automotive industry. Through actual validation, this study elucidates the interrelationships among dissimilar joints, salt spray corrosion, mechanical properties, and failure mechanisms.
關鍵字(中) ★ 失效機制
★ 機械性質
★ 自衝鉚接
★ 異種材料
★ 鹽霧腐蝕
★ 韋伯分布
★ 疲勞測試
關鍵字(英) ★ Failure mechanism
★ Mechanical properties
★ Self-piercing riveting
★ Dissimilar
★ Salt spray corrosion
★ Lap-shear test
★ Fatigue test
★ Weibull distribution
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與辦法 1
第二章 文獻回顧 3
2.1 SPR現狀發展 3
2.2 SPR鉚接流程 3
2.3 鉚接品質評判標準 5
2.4 機械性質與失效模式 7
2.4.1. 搭接剪切測試的失效模式 7
2.4.2. 疲勞測試的失效模式 9
第三章 材料與實驗設置 12
3.1 實驗材料 12
3.1.1. 材料化學成分與機械性質 12
3.1.2. 實驗組合 13
3.2 鉚接實驗 15
3.2.1. QForm金屬成型鉚接模擬 15
3.2.2. 愛托力TC-824鉚釘機 17
3.3 鹽霧腐蝕測試 20
3.4 機械測試(搭接剪切/疲勞) 22
3.5 微觀結構 24
第四章 實驗結果與探討 25
4.1 搭接剪切測試 25
4.1.1. 搭接剪切力學性能 25
4.1.2. 搭接剪切能量吸收值 29
4.1.3. 搭接剪切失效模式 33
4.2 疲勞測試 37
4.2.1. 疲勞公式 37
4.2.2. 疲勞性能 39
4.2.3. 疲勞失效模式 46
4.2.4. 疲勞失效機制 51
4.3 SPR接頭失效機制總結 60
第五章 結論 63
參考文獻 66
附錄一 71
附錄二 72
附錄三 73
附錄四 74
附錄五 75
參考文獻 [1] H. Zhao, L. Han, Y. Liu and X. Liu, "Analysis of joint formation mechanisms for self-piercing riveting (SPR) process with varying joining parameters," Journal of Manufacturing Processes, 2022.
[2] Abe, Y., T. Kato, and K. Mori. "Joinability of aluminium alloy and mild steel sheets by self piercing rivet." Journal of Materials Processing Technology 177.1-3 (2006): 417-421.
[3] Achira, Satoshi, Yohei Abe, and Ken-ichiro Mori. "Self-pierce riveting of three thin sheets of aluminum alloy A5052 and 980 MPa steel." Materials 15.3 (2022): 1010.
[4] Zhuang, Weimin, et al. "Research on the lightweight design of body-side structure based on crashworthiness requirements." Journal of Shanghai Jiaotong University (Science) 24 (2019): 313-322.
[5] Abe, Yohei, and Ken-ichiro Mori. "Mechanical clinching and self-pierce riveting for sheet combination of 780-MPa high-strength steel and aluminium alloy A5052 sheets and durability on salt spray test of joints." The International Journal of Advanced Manufacturing Technology 113.1 (2021): 59-72.
[6] Lee, Young-In, and Ho-Kyung Kim. "Effects of residual stresses on the fatigue lifetimes of self-piercing riveted joints of AZ31 Mg alloy and Al5052 Al alloy sheets." Metals 11.12 (2021): 2037.
[7] Li, Dezhi, et al. "Self-piercing riveting-a review." The International Journal of Advanced Manufacturing Technology 92 (2017): 1777-1824.
[8] Abe, Y., T. Kato, and K. Mori. "Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die." Journal of materials processing technology 209.8 (2009): 3914-3922.
[9] Zhao, Lun, et al. "Fretting behavior of self-piercing riveted joints in titanium sheet materials." Journal of Materials Processing Technology 249 (2017): 246-254.
[10] Li, Wei, et al. "Joining of dissimilar metals between magnesium AZ31B and aluminum A6061-T6 using galvanized steel as a transition joining layer." Journal of Iron and Steel Research International (2022): 1-10.
[11] Pickin, C. G., Ken Young, and Ian Tuersley. "Joining of lightweight sandwich sheets to aluminium using self-pierce riveting." Materials & design 28.8 (2007): 2361-2365.
[12] Rusia, Aman, and Stefan Weihe. "Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength." Journal of Manufacturing Processes 57 (2020): 519-532.
[13] Zhang, Xianlian, et al. "Self-piercing riveting of aluminium–lithium alloy sheet materials." Journal of Materials Processing Technology 268 (2019): 192-200.
[14] Xie, Zhiqiang, et al. "Study on shear performance and calculation method for self-pierce riveted joints in galvanized steel sheet." Thin-Walled Structures 161 (2021): 107490.
[15] Xie, Zhiqiang, et al. "Improved shear strength design of cold-formed steel connection with single self-piercing rivet." Thin-Walled Structures 131 (2018): 708-717.
[16] Calabrese, Luigi, et al. "Effect of galvanic corrosion on durability of aluminium/steel self-piercing rivet joints." Corrosion Engineering, Science and Technology 50.1 (2015): 10-17.
[17] Calabrese, Luigi, et al. "Failure behaviour of SPR joints after salt spray test." Engineering Structures 82 (2015): 33-43.
[18] Xing, Baoying, et al. "Static and fatigue behavior of self-piercing riveted joints with two overlap areas." Journal of Materials Research and Technology 14 (2021): 1333-1338.
[19] Moraes, J. F. C., et al. "High cycle fatigue mechanisms of aluminum self?piercing riveted joints." Fatigue & Fracture of Engineering Materials & Structures 41.1 (2018): 57-70.
[20] Lin, Yi-Kai, Kang-Ming Hsu, and Ping-Kun Lee. "The application of flow stress model to sheet metal forming simulation." China steel technical report 23 (2010): 31-35.
[21] Poulin, Camille M., et al. "Experimental studies into the role of cyclic bending during stretching of dual-phase steel sheets." International Journal of Material Forming 13 (2020): 393-408.
[22] Sun, Yong, et al. "Forming-induced residual stress and material properties of roll-formed high-strength steels." Automotive Innovation 3 (2020): 210-220.
[23] Sun, Yuhao, et al. "An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process." Journal of Materials Processing Technology 275 (2020): 116387.
[24] Yildiz, Rasid Ahmed, and Safak Yilmaz. "Stress-strain properties of artificially aged 6061 Al alloy: experiments and modeling." Journal of Materials Engineering and Performance 29.9 (2020): 5764-5775.
[25] Wituschek, Simon, and Michael Lechner. "Material characterisation methods for a tumbling self-piercing riveting process." (2021).
[26] Ma, YunWu, et al. "Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges." Journal of Materials Processing Technology 251 (2018): 282-294.
[27] Du, Zhanpeng, et al. "Numerical simulation and parametric study on self-piercing riveting process of aluminium–steel hybrid sheets." Thin-Walled Structures 164 (2021): 107872.
[28] Haque, Rezwanul, and Yvonne Durandet. "Strength prediction of self-pierce riveted joint in cross-tension and lap-shear." Materials & Design 108 (2016): 666-678.
[29] Huang, Zhi-Chao, et al. "Mechanical properties and fatigue failure mechanisms of purely self-piercing riveted (SPR) and hybrid (SPR-bonded) joints under salt spray environment." Journal of Materials Research and Technology 20 (2022): 2501-2517.
[30] STANDARD, BRITISH, and BSEN ISO. "Corrosion tests in artificial atmospheres—Salt spray tests." (2006).
[31] Schanz, Jochen, et al. "Adhesively bonded CFRP/Al joints: Influence of the surface pretreatment on corrosion during salt spray test." Materials and Corrosion 73.2 (2022): 158-170.
[32] 曾煒策, and 傅尹坤. 機器學習輔助自沖鉚釘於鋁合金6061和雙相鋼(DP780、DP980、1180MS)端到端製程中之品質評估方法(鉚接品質和機械性質) / 曾煒策著. 2023. 撰者.
[33] Bala, Nura, and Madzlan Napiah. "Fatigue life and rutting performance modelling of nanosilica/polymer composite modified asphalt mixtures using Weibull distribution." International Journal of Pavement Engineering 21.4 (2020): 497-506.
[34] Khashaba, U. A. "Fatigue and reliability analysis of unidirectional GFRP composites under rotating bending loads." Journal of composite materials 37.4 (2003): 317-331.
[35] Pedrosa, Bruno, et al. "Reliability of fatigue strength curves for riveted connections using normal and weibull distribution functions." ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 6.3 (2020): 04020034.
[36] Sakiyama, Tatsuya, et al. "Dissimilar metal joining technologies for steel sheet and aluminum alloy sheet in auto body." Nippon steel technical report 103 (2013): 91-98.
[37] Jiang, Hao, et al. "Fatigue degradation after salt spray ageing of electromagnetically riveted joints for CFRP/Al hybrid structure." Materials & Design 142 (2018): 297-307.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2025-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明