參考文獻 |
[1] Yu, Shimeng. Semiconductor Memory Devices and Circuits. CRC Press, 2022.
[2] T. Mikolajick et al., “The Past, the Present, and the Future of Ferroelectric Memories”, IEEE Trans. Electron Devices, VOL. 67, NO. 4, APRIL 2020
[3] Ju Yong Park et al., “Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics,” Adv. Mater., vol. 35 issue. 43, 2023.
[4] J. Okuno et al., “SoC Compatible 1T1C FeRAM Memory Array Based on Ferroelectric Hf0.5Zr0.5O2,” 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020.
[5]. M. Pe?i? et al., Adv. Funct. Mater., 26, 4601 (2016)
[6] Halid Mulaosmanovic et al., “Ferroelectric field-effect transistors based on HfO2: a review,” Nanotechnology 32 502002, 2021.
[7] S. Dunkel et al., “A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond,” 2017 IEEE International Electron Devices Meeting (IEDM), pp. 19.7.1-19.7.4, San Francisco, CA, USA, 2017.
[8] Toprasertpong, K. et al., “On the strong coupling of polarization and charge68 trapping in HfO2/Si-based ferroelectric field-effect transistors,” Appl. Phys. A 128, 1114, 2022.
[9] Y. W. Yin et al., “Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface,” J. Appl. Phys. 117, 172601, 2015.
[10] T. Mikolajick et al., “Next generation ferroelectric materials for semiconductor process integration and their applications,” J. Appl. Phys. 129, 100901, 2021.
[11] V. Khade, et al., “A comparative study on rigid and flexible magnetoelectric composites,” J. Adv. Dielectr. 14, 2340001, 2024
[12] J. Valasek, “Piezoelectric and Allied Phenomena in Rochelle Salt,” Phys. Rev.17, 475–81,1921.
[13] Busch G. and Sccherrer P. Naturwiss, 23,737, 1935.
[14] J. Muller, E. Yurchuk, T. Schlosser et al., “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG.” Symposium on VLSI Technology (VLSIT),pp. 25-26, 2012.
[15] N.Gong, T. P. Ma, “Why Is FE–HfO2 More Suitable Than PZT or SBT for ScaledNonvolatile 1-T Memory Cell? A Retention Perspective,” IEEE Electron Device Letters,vol. 37, pp. 1123-1126, 2016.
[16] T. Boscke, J. Muller, D. Braeuhaus, et al., “Ferroelectricity in Hafnium Oxide Thin Films,”Applied Physics Letters, vol. 99, pp. 102903-102903, 2011.
[17] J. Muller, T. S. Boscke, D. Brauhaus, et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 99, pp. 112901, 2011.
[18] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U.Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and Antiferroelectricity of doped thin HfO2-based films,” Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015.
[19] M.H.Park et al., “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants”, J. Mater. Chem. C 5(19), 4677–4690, APRIL 2017
[20] Park et al., "HfO2-based ferroelectric materials: A review," J. Mater. Chem. C, vol. 5, no. 19, pp. 4677–4690, 2017.
[21] G. M. Gaddam et al., "The role of composition and structure on the ferroelectric properties of HfO2-based materials," Journal of Applied Physics, vol. 122, no. 12, 2017.
[22] M. Hoffmann, M. Pe?i?, K. Chatterjee, et al., “Direct Observation of Negative Capacitancein Polycrystalline Ferroelectric HfO2,” Advanced Functional Materials, vol. 26, pp. 8643-8649, 2016.
[23] Landau, L. D.; Lifshitz, E. M. Statistical Physics. Course of Theoretical Physics, 3rd ed.; Butterworth-Heinemann, 1984; Vol. 5.
[24] Song, Seul Ji et al., “Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors,” Scientific reports 6.1, 2016.
[25] Sang Mo Yang et al., “Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors,” Current Applied Physics, Volume 11, Issue 5, Pages 1111-1125, 2011.
[26] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B vol. 82, pp. 014109, 2010.
[27] Kolmogorov, A. N., Avrami, M., & Ishibashi, Y. (1994). "Kinetics of Phase Transformations." Journal of Physics: Condensed Matter, 6(2), 529-532.
[28] Zheng, H. et al. (2009). "Inhomogeneous Field Mechanism of Polarization Switching in Ferroelectrics." Physical Review Letters, 102(3), 037601.
[29] N. Gong, X. Sun, H. Jiang, et al., “Nucleation limited switching (NLS) model for HfO2 based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics,” Applied Physics Letters, vol. 112, pp. 262903, 2018.
[30] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B vol. 82, pp. 014109, 2010.
[31] M. Materano, P. D. Lomenzo, A. Kersch, et al., “Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics,”Inorganic Chemistry Frontiers, vol. 8, pp. 2650-2672, 2021.69
[32] P. D. Lomenzo, Q. Takmeel, C. Zhou, et al., “TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films,” Journal of Applied Physics, vol. 117, pp. 134105, 2015.
[33] Park, M.H., Lee, Y.H., Mikolajick, T. et al. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications 8, 795–808 (2018).
[34] S. Jindal et al., “Temperature-Dependent Field Cycling Behavior of Ferroelectric Hafnium Zirconium Oxide (HZO) MFM Capacitors,” in IEEE Transactions on electron Devices, vol. 69, no. 7, pp. 3990-3996, 2022.
[35] Milan Pe?i? et al., “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Advanced Functional Materials, vol. 26, Pages 4601-4612, 2016.
[36] Paul Jacob et al., “A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric,” Solids, 4(4), 356-367, 2023.
[37] N. Gong et al, “A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation,” in IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, 2018.
[38] R. A. Izmailov, J. W. Strand, L. Larcher, et al., “Electron trapping in ferroelectric HfO2,” Physical Review Materials, vol. 5, pp. 034415, 2021.
[39] Yoonho Ahn et al., “Imprint effect on energy storage performance of Aurivillius Bi3TaTiO9 thin films,” Journal of Materials Research and Technology, Volume 20, Pages 4213-4219, 2022.
[40] X. Pan, and T. P. Ma. “Retention mechanism study of the ferroelectric field effect transistor,” Applied Physics Letters, vol. 99, pp. 013505, 2011.
[41] Jung, M., Gaddam, V. & Jeon, S., “A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology,” Nano Convergence 9, 44 (2022).
[42]C.-H. Chuang, T.-Y. Wang, C.-Y. Chou, S.-H. Yi, Y.-S. Jiang, J.-J. Shyue,M.-J. Chen, Adv. Sci. 2023, 10, 2302770.
[43] Cheng Ma, et al., “Creation and Destruction of Morphotropic Phase Boundaries through Electrical Poling: A Case Study of Lead-Free (Bi1/2Na1/2)TiO3?BaTiO3 Piezoelectrics,” Phys. Rev. Lett. 109, 107602
[44] A. Kashir et al., Nanotechnology 32(44), 445706 (2021)
[45] M.H. Park et al., Morphotropic phase boundary of Hf1–x Zr x O2 thin films for dynamic random access memories. ACS Appl. Mater. Interfaces. 10(49), 42666–42673 (2018)
[46] Fei Mo et al., “Reliability characteristics of metal/ferroelectric-HfO2/IGZO/metal capacitor for non-volatile memory application,” Appl. Phys. Express 13 074005, 2020.
[47] Baek Su Kim et al., “A Comparative Study on the Ferroelectric Performances in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films Using Tetrakis(ethylmethylamino) and Tetrakis(dimethylamino) Precursors,” Nanoscale Res Lett. 15: 72, 2020.
[48] 劉承叡, “H2 Plasma Treatment in IGZO-Based FeCAP for Enhancing Storage Capacity, Switching Speed, and Endurance/Retention”, 國立中央大學, 碩士論文, 2024
[49] 陳昱廷, “Development and Reliability Analysis of 3 Bits-Per-Cell Ferroelectric FETs Achieving Immediate Read-After-Write and High Endurance (>10^12Cycles)”, 國立中央大學, 碩士論文, 2024
[50] Markku Leskela et al., “Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges,” Angew Chem Int Ed Engl., 24;42(45):5548-54,
2003.
[51] Biyao Zhao et al., “Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing,” Nanomaterials, 12(17), 3001, 2022
[52] D.J.J. Loy et al., “Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices”, Sci. Rep 8, 14774, OCTOBER 2018
[53] C. -Y. Liao et al., "Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589.
[54] S.C. Yan et al., “Multilevel Cell Ferroelectric HfZrO2 FinFET With High Speed and Large Memory Window Using AlON Interfacial Layer”, IEEE Electron Device Lett, VOL. 44, NO. 1, JANUARY 2023
[55] Adv. Electron. Mater. 2023, 9, 2201257
[56] Y. Qu, J. Li, M. Si, X. Lyu and P. D. Ye, "Quantitative Characterization of Interface Traps in Ferroelectric/Dielectric Stack Using Conductance Method," in IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5315-5321, Dec. 2020, doi: 10.1109/TED.2020.3034564.
[57] V. Gaddam, D. Das et al., “Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors”, IEEE Trans Electron
[58] K. He, N. Chen et al., “Method for determining crystal grain size by X-ray diffraction”, Cryst. Res. Technol 53 ,1700157, JANUARY 2018
[59] 王聖閔, “Research on Multifunctional Metal Gate and HfO2/ZrO2 Superlattice Stacks in Ferroelectric Transistors for High Temperature Data Retention, Multi-Level Cell Storage, and Long Endurance”, 國立中央大學, 碩士論文, 2023
[60] T. Mimura et al., “Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness”, Appl. Phys. Lett 115, 032901, JULY 2019
[61] Venkateswarlu Gaddam, Giuk Kim, Taeho Kim, Minhyun Jung, Chaeheon Kim, and Sanghun Jeon, “Novel Approach to High κ (?59) and Low EOT (?3.8A) near the Morphotrophic Phase Boundary with AFE/FE(ZrO2/HZO) Bilayer Heterostructures and High-Pressure Annealing”, (ACS) (2022).
[62] R. Materlik, C. Kunneth, A. Kersch, “The origin of ferroelectricity in Hf1?xZrxO2: A computational investigation and a surface energy model”, (Journal of Applied Physics) (2015).
[63] Youngin Goh et al., “Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode,” Nanoscale, 12, 9024-9031, 2020.
[64] Y. Goh et al., “Crystalline Phase-Controlled High-Quality Hafnia Ferroelectric With RuO? Electrode,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3431-3434, 2020.
[65] Jihoon Kim et al., “A study on H2 plasma treatment effect on a-IGZO thin film transistor,” Journal of Materials Research, 27, 2318–2325, 2012.
[66] Yiming Qu, Junkang Li, Mengwei Si, Xiao Lyu, and Peide D. Ye, “Quantitative Characterization of Interface Traps in Ferroelectric/ Dielectric Stack Using Conductance Method”, (EDS) (2020).
[67]H. Mulaosmanovic et al., "Interplay Between Switching and Retention in HfO2-Based Ferroelectric FETs," in IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3466-3471, Aug. 2020, doi: 10.1109/TED.2020.3004033.
[68] D. Kleimaier, H. Mulaosmanovic, S. Dunkel, S. Beyer, S. Soss, S. Slesazeck, T. Mikolajick, IEEE Electron Device Lett. 2021, 42, 1774.
[69] Min-Kyu Kim and Jang-Sik Lee, “Ferroelectric Analog Synaptic Transistors”, (ACS) (2019). |