國立中央大學 114 學年度碩士班考試入學試題

所別:化學工程與材料工程學系 碩士班 甲組(一般生)

第1頁/共3頁

科目: 化工熱力學及化學反應工程

*本科考試可使用計算機,廠牌、功能不拘

計算題 請詳列計算過程。

Problem 1 (10 pts)

Hydrogen gas flows steadily through a horizontal, insulated pipe with an internal diameter of 4 cm. A pressure drop occurs as the gas passes through a partially opened valve. Upstream of the valve, the pressure is 700 kPa, the temperature is 120°C, and the average velocity is 10 m/s. If the pressure just downstream from the valve is 20 kPa, what is the temperature? Assume for nitrogen that PV/T is constant, $C_v=2.5$ R and $C_P=3.5$ R.

Problem 2 (20 pts)

An insulated container consists of two compartments separated by a partition. One compartment contains 5 moles of an ideal gas at a pressure of P_1 =15 bar and a temperature of T=300 K. The adjoining compartment contains 3 moles of an ideal gas at a pressure of P_2 =8 bar (initially under evacuation) and a temperature of T=240 K. When a valve is opened, the system is allowed to reach equilibrium, resulting in equilibrium temperature and pressure. Assume for nitrogen that C_v is 2.5 R and C_P is 3.5 R.

- (a) Calculate the final pressure P of mixture
- (b) Calculate the entropy change when the gases are identical
- (c) Calculate the entropy change when the gases are different
- (d) What is minimum amount of work required to separate the mixture in (c) into two different gases, each at equilibrium temperature T and pressure P

Problem 3 (10 pts)

Prepare a P- x_1 - y_1 diagram and x_1 - y_1 diagrams for a binary system of cyclohexanone (C) and phenol (P) at 200 °C by calculating P and y_1 at five different compositions x_1 =0, 0.2, 0.4, 0.7, 1.0. The vapor phases are assumed as an idea gas.

$$\begin{split} \frac{G^E}{RT} &= -3.5x_1x_2 \; (independent \; of \; temperature \; and \; pressure) \\ & \ln P_C^{sat}(kPa) = 15.0886 - \frac{4093.3}{T\; (^{\circ}\text{C}) + 236.12} \\ & \ln P_P^{sat}(kPa) = 14.4130 - \frac{3490.885}{T\; (^{\circ}\text{C}) + 174.569} \end{split}$$

Problem 4 (10 pts)

Prove that in a binary system, if one component follows Henry's Law, then the other component follows Lewis-Randall Law.

注意:背面有試題

國立中央大學 114 學年度碩士班考試入學試題

所别: 化學工程與材料工程學系 碩士班 甲組(一般生)

第2頁/共3頁

科目: 化工熱力學及化學反應工程

*本科考試可使用計算機,廠牌、功能不拘

Problem 5 (15 pts)

The gas phase reaction:

$$CH_3-CH_3\rightarrow CH_2=CH_2+H_2$$

follows an elementary rate law and is to be carried out first in a PFR and then in a separate experiment in a CSTR. When pure CH₃-CH₃ is fed to a 10 dm³ PFR at 300K and a volumetric flow rate of 5 dm³/s, the conversion is 80%. When the mixture of 50% CH₃-CH₃ and 50% inert (I) is fed to a 10 dm³ CSTR at 320K and a volumetric flow rate of 5 dm³/s, the conversion is 80%. What is the activation energy in cal/mol?

$$\int_0^x \frac{dx}{1-x} = \ln\left(\frac{1}{1-x}\right)$$

$$\int_0^x \frac{dx}{(1-x)^2} = \frac{x}{1-x}$$

$$\int_0^x \frac{(1+\varepsilon x)dx}{1-x} = (1+\varepsilon)\ln\frac{1}{1-x} - \varepsilon x$$

Problem 6 (15 pts)

Consider a cylindrical batch reactor with one end fitted with a frictionless piston attached to a spring (as shown in the figure below). The reaction

A+B→8C

The gas reaction is second order in A and first order in B.

- (a) Writing the rate law solely as a conversion function, evaluating all possible symbols numerically. (10 pts)
- (b) What is the conversion and rate of reaction when V = 0.2 ft³? (5 pts)

Additional information:

Equal moles of A and B are present at the beginning (t = 0)

Initial volume: 0.15 ft³.

Value of k_1 : 1.0 (ft³/lb mol)² ·s⁻¹

The relationship between the volume of the reactor and pressure within the reactor is

$$V = (0.1) P (V \text{ in } ft^3 \text{ and } P \text{ in atm})$$

Temperature of the system (considered constant): 140°F

Gas constant: 0.73 ft³ · atm/lb mol °R

注意:背面有試題

國立中央大學 114 學年度碩士班考試入學試題

所別: 化學工程與材料工程學系 碩士班 甲組(一般生)

第3頁/共3頁

科目: 化工熱力學及化學反應工程

*本科考試可使用計算機,廠牌、功能不拘

Problem 7 (10 pts)

(a) An irreversible, liquid phase, second-order reaction, A→Product (s), proceeds to 50% conversion in a PFT operating isothermally, isobarically, and at a steady state. What conversion would be obtained if the PFR operated at *double* the original pressure (with all else unchanged)? (3 pts)

(A)>50% (B)<50% (C) 50% (D) insufficient information to answer definitively

(b) An irreversible, gas phase, second-order reaction, A→Product (s), proceeds to 50% conversion in a PFT operating isothermally, isobarically, and at a steady state. What conversion would be obtained if the PFR operated at *double* the original pressure (with all else unchanged)? (3 pts)

(A)>50% (B)<50% (C) 50% (D) insufficient information to answer definitively

(c) The rate constant for an irreversible, heterogeneously catalyzed, gas phase, second-order reaction, A→Product (s), was determined to be 0.234 from experimental data failed to include a large pressure drop in the reactor in his/her analysis. If the pressure drop were properly accounted for, the rate constant would be (4 pts)

(A)>0.234 (B)<0.234 (C) 0.234 (D) insufficient information to answer definitively

Problem 8 (10 pts)

Nitric acid is made commercially from nitric oxide. The gas-phase oxidation of ammonia produces nitric oxide.

$$4NH_3+5O_2 \rightarrow 4NO + 6H_2O$$

The feed consists of 15 mol% ammonia in air at 8.2 atm and 227°C.

- (a) What is the total entering concentration?
- (b) What is the entering concentration of ammonia?
- (c) Set up a stoichiometric table with ammonia as your basis of calculation.
- (d) Express the concentration, Ci, for each species as a conversion function for a constant-volume batch reactor. Express the total pressure as a function of X.
- (e) Repeat (d) assuming the reaction is first order in NH4 and half order in O2
 - (1) Write the rate law in terms of molar flow rates.
 - (2) Write the combined rate law and mole balance solely in terms of conversion and rate law parameters for a batch reactor and a flow reactor.