類組: 化學類 科目: 綜合化學(1001)

共_8_頁 第_/_頁

單边	單選題共五十題,每題2分,請於答案卡上作答。					
1.	How many angular nodes are there in all orbitals of the shell $n = 4$ for a hydrogen atom?					
	(A) 34 (B) 21	(C) 48 (D	(E) 3			
2.	The wavefunction ψ_{nlm}	$_{\iota_{l}}(r, heta,\phi)$ of a hydroge	en atom is equal to R_{nl}	$(r) \times Y_{lm_l}(\theta, \phi)$, where		
	$R_{nl}(r)$ is the radial way	efunction and $Y_{lm_l}(\theta)$	ϕ) is the angular wavef	unction. What is the		
	probability density of fir					
	hydrogen atom?					
	(A) $\psi_{300}^2(d,0,0)$	(B) $R_{30}^2(d)$	(C) $d^2 \cdot \psi_{300}^2(d)$, 0,0)		
	(D) $d^2 \cdot R_{30}^2$	(E) None of the a	bove answers are correc	t.		
3.	For the ground-state of A	For the ground-state of Au ⁺ , what type of orbital do the electrons with the highest energy re				
	in?					
	(A) 6s (B) 5p	(C) 4f $(D$	(E) 5d			
4.	Arrange the following at	oms in order of increas	sing first ionization energ	gy (from least to		
	greatest): Be, B, N, O, F.	Which of the followin				
	` '	(B) B < Be <	`	C) B < O < Be < N < F		
	(D) B < Be < N < O < F	` '				
5.	Which compound has the					
	• •	` '	$^{-}$ (D) N_2O_4	(E) N_2O_3		
6.	Which compound has a i					
_	$(A) BF_3 \qquad (B) F_3$		` '	(E) BrF ₅		
7.	Which of the following of	liatomic species is para	imagnetic, has a bond or	der of 1.5, and is		
	classified as a radical?	7. † (C) D	(D) (NI	(E) NO		
0		C_2^+ (C) B_2	(D) CN	(E) NO		
8.	What is the hybridization $H_2NC(O)NNC(O)NH_2$?	i of the bolded atoms is	vive, from left to fight, i	n azodicarbonamide,		
	(A) sp^3 , sp , sp^2	(B) sn^2 sn sn^3	(C) sn ² sn sn ²	(D) sp , sp , sp^2		
	(E) sp^2 , sp^2 , sp^2	(D) sp , sp , sp	(C) sp , sp , sp	(D) sp , sp , sp		
9.	A solid is found to be ext	tremely hard, has a ver	v high melting point, is i	nsoluble in water, and		
,	does not conduct electric					
	solids does it most likely	-	TT,			
	(A) $CaCl_2$ (B) I	•	(D) Pb (E	E) SiC		
10.	A metal Z with atomic ra	. ,	` '	,		
	calculates the radius of th					
	atom Z apart?	2 1		1 0 7		
	(A) $r(\sqrt{2}-1)$	(B) $r(2\sqrt{2}-1)$	(C) $r(\sqrt{3} -$	- 1)		
	` ' '	(E) $r/(2\sqrt{2}-1)$,		

類組:化學類 科目:有機化學(1002)

共_8_頁第2_頁

- 11. There are several resonance structures of sulfate ions. Which statement about the most stable Lewis structure of the sulfate ion is invalid?
 - (A) The sulfate ion has a tetrahedral geometry.
 - (B) The sulfate ion is nonpolar.
 - (C) The overall charge of the sulfate ion is 0 in the most stable Lewis structure.
 - (D) All sulfur-oxygen bonds are equivalent.
 - (E) The sulfur atom has an expanded octet.
- 12. Why is CO slightly polar, but not strongly polar, despite the significant electronegativity difference between carbon and oxygen?
 - (A) The triple bond between carbon and oxygen is highly polar, but the molecule's symmetry reduces the overall polarity.
 - (B) The triple bond in CO eliminates any dipole moment, as it localizes electrons equally between the two atoms.
 - (C) Both carbon and oxygen have formal charges of zero, making the molecule nonpolar despite the electronegativity difference.
 - (D) The electronegativity difference between carbon and oxygen is large, but the formal charge distribution reduces the effective dipole moment.
 - (E) The molecule has a linear geometry, causing the bond dipoles to cancel each other out.
- 13. One ionic crystal structure contains two ions, Ca²⁺ and F⁻. Ca²⁺ ions occupy the face-centered cubic lattice points, and F⁻ ions occupy all the tetrahedral holes. Which statement is invalid?
 - (A) The ionic radius $r_{Ca^{2+}}$ of Ca^{2+} is larger than the ionic radius $r_{F^{-}}$ of F^{-} .
 - (B) The coordination numbers of Ca²⁺ and F⁻ are 12 and 8 respectively.
 - (C) The relation between the edge length a of the unit cell and $r_{Ca^{2+}} + r_{F^-}$ is equivalent to $a \cdot \sqrt{3}/4 = r_{Ca^{2+}} + r_{F^-}$
 - (D) There are 4 Ca²⁺ ions and 8 F⁻ ions in a unit cell.
 - (E) The empirical formula of the ionic crystal structure is CaF₂.
- 14. Which is not the valid statement?
 - (A) $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$ $\Delta H_{rxn}^o > 0$, the reaction is spontaneous at high temperatures and is entropy driven.
 - (B) $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$ $\Delta H_{rxn}^o > 0$, the reaction will be spontaneous at low temperatures and is entropy driven.
 - (C) $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H_{rxn}^0 < 0$, the reaction will be spontaneous at low temperatures and is enthalpy driven.
 - (D) $N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$ $\Delta H^o_{rxn} < 0$, the reaction will be spontaneous at all temperatures.
 - (E) Water slowly evaporates at 25°C. This is a spontaneous reaction that is entropy driven.

類組:化學類 科目:無機化學(1003)

共8 頁第3頁

- 15. A real gas behaves non-ideally under certain conditions and can be described by the van der Waals equation of state. Which of the following statements best explains the relationship between the compression factor Z, van der Waals' coefficients a and b, and deviations from ideal gas behavior?
 - (A) For a gas with large a and small b, Z is always greater than 1, indicating the dominance of repulsive forces over attractive forces.
 - (B) At low pressures, the effect of b dominates, causing Z to decrease below 1 due to volume corrections.
 - (C) For a gas with large a, Z decreases below 1 at moderate pressures due to the strong attractive interactions between molecules.
 - (D) At high pressure, the influence of both *a* and *b* diminishes, and Z becomes independent of these coefficients, matching ideal gas behavior.
 - (E) Z is always less than 1 for any gas described by the van der Waals equation, regardless of the values of a and b.
- 16. Consider a gas in thermal equilibrium at two different temperatures, T_1 and T_2 , where $T_2 > T_1$. Which of the following statements best explains the interplay between the Maxwell-Boltzmann distribution, temperature, and entropy for this system?
 - (A) At T₂, the Maxwell-Boltzmann distribution shifts to lower particle speeds, and entropy decreases because there are fewer accessible microstates.
 - (B) At T₂, the Maxwell-Boltzmann distribution becomes broader, indicating a greater range of particle speeds and an increase in entropy due to more accessible microstates.
 - (C) The Maxwell-Boltzmann distribution remains unchanged between T₁ and T₂ because the distribution depends only on the mass of the particles, not the temperature.
 - (D) At T₁, the narrower Maxwell-Boltzmann distribution corresponds to higher entropy, as lower temperatures increase the uniformity of particle speeds.
 - (E) Entropy remains constant between T₁ and T₂ because it is a state function independent of temperature changes.
- 17. Consider the thermodynamic properties, U, S_{surr}, T, H, w, q_{rev}, how many of them are not state functions?

(A) 6

(B) 5

(C)4

(D)3

(E)2

18. Assume that CH₄ behaves as an ideal gas and its heat capacity is mainly contributed by translational and rotational motion but none of vibrational ones. Consider the irreversible compression of 1 mole of CH₄ from an initial state at $P_1 = 1$ bar and $T_1 = 300$ K to a final state at $P_2 = 4$ bar, $T_2 = 400$ K, against a constant external pressure of $P_{\text{ext}} = 4$ bar. What is the heat transfer q during the process?

(A) 2494.2 J

(B) 4157.0 J

(C) 6651.2 J

(D) -6651.2 J

(E) -4157.0 J

台灣聯合大學系統 114 學年度碩士班招生考試試題

類組:化學類 科目:物理化學(1004)

共8頁第4頁

19. Given the standard enthalpies of formation for Br₂(g) and Br(g), 30.7 and 112 kJ/mol respectively, what is the Br-Br bond enthalpy?

- (A) 81.3 kJ/mol
- (B) 193.3 kJ/mol (C) 142.7 kJ/mol
- (D) 254.7 kJ/mol (E) 112 kJ/mol

20. Which is not the valid thermodynamic equation?

- (A) U = H PV
- (B) $S = k_R \cdot ln(W)$
- (C) H = G + ST

- (D) A = U ST
- (E) $\Delta G_{rxn} = \Delta G_{rxn}^{o} + RT \cdot ln (K)$
- 21. For CaCl₂, the absolute value of the enthalpy of hydration is larger than the lattice enthalpy. This means that for CaCl₂
 - (A) the enthalpy of solution is exothermic.
 - (B) the lattice enthalpy is negative.
 - (C) the enthalpy of hydration is positive.
 - (D) the entropy changes of solution is smaller than 0.
 - (E) the solubility increases when the temperature increases.
- 22. A mixture of two liquids, A and B, forms a minimum boiling azeotrope. Which of the following statements is correct regarding this mixture?
 - (A) The vapor pressure of the mixture is lower than that predicted by Raoult's law.
 - (B) The intermolecular forces between A and B molecules are stronger than those between A-A and B-B molecules.
 - (C) Fractional distillation may be used to completely separate A and B from the azeotropic mixture.
 - (D) The boiling point of the azeotrope is lower than that of either pure A or pure B.
 - (E) The above statements are all correct.
- 23. Which of the following statements is true?
 - (A) When the value of reaction quotient Q is large, the equilibrium lies on the product side of the equilibrium reaction.
 - (B) An equilibrium constant value significantly less than 1 indicates that the equilibrium concentrations of the products are much smaller than those of the reactants.
 - (C) When the value of K is large, the equilibrium lies on the reactant side of the equilibrium reaction.
 - (D) A large value of Q means that the equilibrium concentrations of the reactants are small compared to the equilibrium concentrations of the products.
 - (E) When the value of Q is small, the forward reaction is spontaneous.
- 24. What is the relationship between K_P and K_C for the reaction below?

$$N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

- (A) $K_P = (RT)^2 K_C$
- (B) $K_P = RTK_C$
- (C) $K_P = K_C$

- (D) $K_C = RTK_P$
- (E) $K_C = (RT)^2 K_P$

台灣聯合大學系統114學年度碩士班招生考試試題								
類組	: <u>化學類</u> 科目: <u>無機化學(1003)</u>				共	8	頁	第_5頁
25.	At constant temperature, consider a equilibr	rium r	eaction					
23.	3 Fe(s) + 4 H ₂ O(g) \rightleftharpoons 4 H ₂ (g) + Fe ₃ O ₄ (s)		•	oftha	contain	ar ic r	educ	ρđ
	(A) ΔS_{rxn} is increased. (B) ΔG_{rx}							ncreased.
					, ,		1 18 11	icreaseu.
26	(D) ΔG°_{rxn} is decreased. (E) The above answers are all incorrect.					and and an		
26.								
	in NO. Starting with equal concentrations of H ₂ and NO, the rate after 30% of the H ₂ has						! 1148	
	reacted is what percent of the initial rate? (A) 3% (B) 27% (C) 34% (D) 49% (E) 70%							
27.	The superheavy synthetic element Tennessin	` ,		` '		cover	ed el	ement so
27.	far. The nuclear fusions reaction for produci			/St 10001	inity dis	50 (01	ou or	omont so
	²⁴⁹ ₉₇ Bk + 2	_		l n				
	Berkelium (Bk) used in this reaction is also				hat is th	ne elei	ment	X?
	(A) $^{45}_{20}$ Ca (B) $^{48}_{20}$ Ca (C)	•			_			
28.	Which of the following amino acids has a th		-			-	•	
	an important role in the folding and stability of proteins						1 ,	
	- · · · · · · · · · · · · · · · · · · ·	_	e (D)	methio	nine	(E)	threc	onine
29.						gold		
	metals is due to							
	(A) Born-Oppenheimer approximation	(B)	iron group	effect				
	(C) island of stability theory	(D)	lanthanide	e contra	ction			
	(E) lazy pair effect							
30.	The rate law for the following mechanism is	.S						
	$Cl_2(g) \Rightarrow 2 Cl(g)$		both	fast, eq	luilibriu	m co	nstan	it K_1 ,
	$Cl(g) + CO(g) \Rightarrow COCl(g)$		both	fast, eq	luilibriu	m co	nstan	it K_2
	$COCl(g) + Cl_2(g) \rightarrow COCl_2(g) + Cl(g)$		<i>k</i> ₃ , sl	•	0.5			
	(A) rate = $k_3 K_1^{0.5} K_2 [\text{Cl}_2]^{1.5} [\text{CO}]$	` '	$rate = k_3 K$	_		;O]		
	(C) rate = $k_3K_1K_2$ [Cl ₂][CO]	(D)	$rate = k_3[0]$	CO][Cl ₂	2]			
	(E) rate = $K_1K_2k_3$ [CO]							
31.	In the reaction mechanism in Question 30,							
	(A) COCI is the activated complex.	0 1/	2					
	(B) COCl is the steady state between step 2 and 3.							
	(C) both Cl atom and COCl are reaction intermediates.							
	(D) the transition state is the mixture of Cl ₂				40k1c			
20	(E) Cl atom is not the reaction intermediate	•		-		1	1ma	.ma ⁹
32.	How many of the structural isomers of C ₆ H ₁	lia nave	e only prin	nary an	u tertia	ry nyo	ıroge	IIS (

(C) 2

(D) 3

(E) 4

(A) 0

(B) 1

	台灣聯合大學系統 114 學年度碩士	班招生考	試試	題		
類組	: <u>化學類</u> 科目: <u>生物化學(1006)</u>		共_	8_頁	第_6_	Ē
33.				~~ \ ~21		
	(A) The ligand field splitting Δ_0 of $[CoCl_6]^{4-}$ is smaller the			H ₃) ₆] ² '		
	(B) The ground-state d-electron configuration of [CoCl ₆]	⁴⁻ is t _{2g} ³ e _g	2.			
	(C) [CoCl ₆] ⁴⁻ has 3 unpaired electrons.					
	(D) [CoCl ₆] ⁴⁻ is paramagnetic.					
	(E) $[CoCl_6]^{4-}$ is low-spin.					
34.	What are the products of the electrolysis of 1 M CuSO ₄ aq	lueous sol	ution?			
	(A) $H_2(g)$ and $S_2O_8^{2-}(aq)$ (B) $H_2(g)$ an	$1d O_2(g)$				
	(C) $Cu(s)$ and $S(s)$ (D) $Cu(s)$ an	$1d O_2(g)$				
	(E) $SO_2(g)$ and $O_2(g)$					
35.	Which of the following aromatic compounds undergo nitra		r than b	enzene?	ı	
	[i] aniline [ii] benzonitrile [iii] benzoic a	acid	[iv] p	henol		
	[v] benzaldehyde					
	(A) [i] and [ii] (B) [i] and [iv]	(C) [iii]	and [v]			
	(D) [i], [ii], and [iv] (E) [iii], [iv], and [v]					
36.	How many of the following oxides of Group 13, 14, and 13	5 element	s are ar	nphoterio	c?	
	As_2O_3 , Ga_2O_3 , PbO , Sb_2O_3 , SnO_2 , Tl_2O					
	(A) 1 (B) 2 (C) 3 (D) 5	(E) 6				
37.	Which of the following are coordination isomers??					
	(A) cis -[CoCl ₂ (en) ₂]Cl and $trans$ -[CoCl ₂ (en) ₂]Cl					
	(B) $[CrCl(OH_2)_5]Cl_2 \cdot H_2O$ and $[CrCl_2(OH_2)_4]Cl \cdot 2H_2O$					
	(C) $[Co\underline{N}CS(NH_3)_5]Cl_2$ and $[Co\underline{S}CN(NH_3)_5]Cl_2$					
	(D) $[Cr(NH3)6][Fe(CN)6]$ and $[Fe(NH3)6][Cr(CN)6]$					
	(E) $[CoBr(NH_3)_5]SO_4$ and $[CoSO_4(NH_3)_5]Br$					
38.	The enzymatic oxidation of ethanol to acetaldehyde in hun	nan body	is a zer	oth-orde	r reaction:	
	$CH_3CH_2OH + NAD^+ \xrightarrow{\text{alcohol}} CH_3COH_3COH_3COH_3COH_3COH_3COH_3COH_3C$	rr , rr+ ,				
					100 /17	r
	The blood alcohol concentration (BAC) of a man who drar					
	to 60 mg/dL within 2.0 hours. How much time is required:	for his BA	arop	os from e	iu mg/al to	Э
	30 mg/dL?	(D) 2.2	1	(TE)	4.0.1	
20	(A) 45 min (B) 1.0 hour (C) 2.0 hours			(E)	4.0 hours	
39.	The Cu ²⁺ ion can be separated from Ag ⁺ , Ca ²⁺ , and Zn ²⁺ in (A) precipitation of Cu ²⁺ with NecS solution	aqueous :	soruuor	т п		
	(A) precipitation of Cu ²⁺ with Na ₂ S solution					
	(B) precipitation of Cu ²⁺ with NaF solution					

(C) precipitation of Ag⁺, Ca²⁺, and Zn²⁺ with Na₂CO₃ solution
(D) precipitation of Ag⁺, Ca²⁺, and Zn²⁺ with NaOH solution

(E) None of above methods.

類組:化學類 科目:綜合化學(1001)

共_8_頁第_7_頁

40. What are X, Y, and Z in the following reactions?

$$CaO(s) + C(s) \xrightarrow{\Delta} X(s) + Y(g)$$

 $X(s) + H_2O(l) \rightarrow Ca(OH)_2(s) + Z(g)$

The reactions are not balanced.

- (A) $X = Ca, Y = CO_2, Z = H_2$
- (B) $X = Ca, Y = CO, Z = H_2$
- (C) $X = CaC, Y = CO_2, Z = CH_4$
- (D) $X = CaC_2$, Y = CO, $Z = C_2H_2$
- (E) $X = CaC_2, Y = CO, Z = CH_4$
- 41. Ms. Usagi wants to determine the standard potential of ozone.

$$O_3(g) + H_2O(1) + 2 e^- \rightarrow O_2(g) + 2 OH^-(aq)$$

She uses a saturated calomel electrode (SCE) as the anode, and for the cathode she bubbles O₃ gas through a NaOH solution with a Pt electrode. The cell diagram should be expressed as:

- (A) $Hg(s)|Hg^{2+}(aq)||OH^{-}(aq),O_2(g),O_3(g)|Pt(s)(s)$
- (B) $Hg(s), Hg_2Cl_2(s)|Cl^-(aq)||OH^-(aq), O_2(g), O_3(g)|Pt(s)$
- (C) $Hg(s)|Hg_2Cl_2(s)|Cl^-(aq)||OH^-(aq)|O_2(g),O_3(g)|Pt$
- (D) $Pt(s)|OH^{-}(aq)|O_{2}(g),O_{3}(g)||Hg^{2+}(aq)|Hg(s)$
- $(E) \quad Pt(s)|OH^-(aq),O_2(g),O_3(g)||Cl^-(aq)|Hg_2Cl_2(s),Hg(s)\\$
- 42. Estimate the effective pH range of a pyridine/pyridinium chloride buffer. For pyridine, the value of K_b is 1.8×10^{-9} .
 - (A) 4.3-6.3
- (B) 5.3-7.3
- (C) 7.7–9.7
- (D) 8.5-9.0

- (E) 9.2-11.2
- 43. Which of the following compounds can not be a monomer of an addition polymer?
 - (A) styrene

- (B) ethyne
- (C) adenine (6-aminopurine)
- (D) 2-chloro-1,3-butadiene
- (E) methyl 2-methylpropenoate (methyl methacrylate)
- 44. Which of the following reactions is not feasible?
 - (A) $2 \text{ FeTiO}_3 + 7 \text{ Cl}_2 + 6 \text{ C} \rightarrow 2 \text{ TiCl}_4 + 2 \text{ FeCl}_3 + 6 \text{ CO}$
 - (B) $TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2$
 - (C) $V_2O_5 + 5 \text{ Ca} \rightarrow 2 \text{ V} + 5 \text{ CaO}$
 - (D) $Cr_2O_3 + 3 Cu \rightarrow 2 Cr + 3 CuO$
 - (E) NiO + H₂ \rightarrow Ni + H₂O
- 45. The lattice enthalpies of ionic compounds of fluoride tends to be very high because
 - (A) the ionic radius of fluoride ion is small.
 - (B) fluoride is a "soft" anion.
 - (C) the electron affinity of fluorine is high.
 - (D) fluoride ion is a weak field ligand.
 - (E) the standard reduction potential of fluorine is high.

台灣聯合大學系統114學年度碩士班招生考試試題

類組: 化學類 科目: 綜合化學(1001) 共 8 頁 第 8						
46.	At 298 K, the ΔG° for combustion of 1 mole of CH ₄ (g) is -818 voltage that could be obtained from a methane-oxygen fuel cell (A) 1.06 V (B) 1.41 V (C) 2.12 V (D)					
47.	Why does the oxygen isotopic composition ¹⁸ O/ ¹⁶ O in the ice conthe climate?	ores provide a good record of				
	 (A) C¹⁸O₂ is a more powerful greenhouse gas than C¹⁶O₂. (B) The ¹⁸O-water dissolves a little more CO₂ than ¹⁶O-water. 					
	(C) The half-life of radioactive ¹⁸ O is a function of temperature	e.				
	(D) The more intense the sun's nuclear fusion reaction, the more					
	(E) There are slight differences in the evaporation and condense					
48.						
	conditions at any time during handling, storage, or while being					
	The followings are incompatible chemicals and should not be a	dded to the same waste				
	container, except	i e				
	(A) H ₂ O ₂ and H ₂ SO ₄ (B) Al and NaOH	(C) HCl and Na ₂ S				
	(D) oleic acid and xylene (E) ethanol and KMnO ₄					
49.	Which of the followings is not the property of saline hydrides?					
	(A) They react with water.					
	(B) They are oxidizing agents.					
	(C) They can be used as strong bases.					
	(D) The atoms of a saline hydride are bonded ionically.					
•	(E) They are insoluble in low polarity organic solvents.					
50.	The reaction of iodine and thiosulfate ion in aqueous solution p					
	(A) iodate ion (B) iodide ion (C) sulfur	(D) persulfate ion				
	(E) no reaction					