國立中央大學 114 學年度碩士班考試入學試題

系所: 光電類 第 頁/共3頁

科目: 電磁學

*本科考試可使用計算器,廠牌、功能不拘

請在答案卷(作答區內)作答。

Part A: Multiple-Choice Questions (40 marks) (Each question is worth 4 marks. Choose the correct option.)

- 1. The energy stored in a capacitor with capacitance C and voltage V is:

- (a) $\frac{1}{2}CV^2$ (b) CV^2 (c) $\frac{1}{2}\frac{V^2}{C}$ (d) $\frac{1}{2}C^2V$
- 2. For a system with bound charges, the polarization P leads to a bound surface charge density σ_b . Which expression correctly represents σ_b ? (\hat{n} is the unit normal vector of the surface)
 - (A) $\sigma_b = -\nabla \cdot \mathbf{P}$ (B) $\sigma_b = \mathbf{P} \cdot \hat{n}$ (C) $\sigma_b = \nabla \cdot \mathbf{D}$ (D) $\sigma_b = \mathbf{D} \cdot \hat{n}$

- 3. The wave equation for the electric field in free space is derived from which of Maxwell's equations?
 - (a) Faraday's law and Ampère-Maxwell law (b) Gauss's law for electricity and Faraday's law (c) Gauss's law for magnetism and Ampère-Maxwell law (d) None of the above
- 4. Which boundary condition is correct at the interface between two media for the tangential component of the electric field (E)? Here \hat{n} is the unit normal vector of the interface.
 - (a) $\mathbf{E}_1 = \mathbf{E}_2$ (b) $(\mathbf{E}_1 \mathbf{E}_2) \cdot \hat{n} = 0$ (c) $(\mathbf{E}_1 \mathbf{E}_2) \times \hat{n} = 0$ (d) $\nabla \cdot \mathbf{E} = 0$
- 5. In an electromagnetic wave propagating in free space, the relationship between the electric field E and magnetic field B is:
 - (a) $\mathbf{E} \parallel \mathbf{B}$ (b) $\mathbf{E} \perp \mathbf{B}$ (c) $\mathbf{E} \cdot \mathbf{B} = 0$ (d) Both (b) and (c)
- 6. The Poynting vector **S** represents:
 - (a) The energy density of an electromagnetic wave
 - (b) The rate of energy flow per unit area in an electromagnetic wave
 - (c) The total energy stored in the electromagnetic field
 - (d) The momentum density of the wave
- 7. Which boundary condition is satisfied by the electric field at the surface of a perfect conductor? (Here E_t means the tangential component of the electric field.)

- (a) $E_t = 0$ (b) $E_t \neq 0$ (c) $\nabla \cdot \mathbf{E} = 0$ (d) $\nabla \times \mathbf{E} = 0$

注意:背面有記

國立中央大學 114 學年度碩士班考試入學試題

系所: <u>光電類</u>

第2頁/共3頁

*本科考試可使用計算器,廠牌、功能不拘

- 8. In the absence of charges and currents, the magnetic field in an electromagnetic wave satisfies:
 - (a) $\nabla \cdot \mathbf{B} = 0$ (b) $\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ (c) Both (a) and (b)
 - (d) None of the above
- 9. The displacement current in Maxwell's equations is required to:
 - (a) Conserve magnetic flux
 - (b) Satisfy charge conservation
 - (c) Ensure electric fields are solenoidal
 - (d) Allow magnetic monopoles
- 10. In free space, the energy density u in an electromagnetic wave is given by:

(a)
$$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}\frac{B^2}{\mu_0}$$
 (b) $u = \epsilon_0 E^2$ (c) $u = \frac{B^2}{\mu_0}$ (d) $u = \frac{1}{2}\epsilon_0 E^2$

Part B: Fill-in-the-Blanks (20 Marks) (Each blank is worth 4 marks.)

- 1. The additional term Maxwell introduced to Ampère's law is called the
- 2. The _____ time accounts for the delay of electromagnetic influence due to finite speed of light.
- 3. The energy flux in an electromagnetic wave is described by the vector.
- 4. For a plane electromagnetic wave, the ratio of the magnitudes of the electric and magnetic fields is equal to _______ in vacuum.
- 5. The radiation pattern of an ideal electric dipole is strongest in the direction to its axis.

Part C: Calculation Problems (40 Marks)

1. (20marks) A plane electromagnetic wave propagates in free space along the z-axis. The electric field is given by:

注意:背面有試題

國立中央大學 114 學年度碩士班考試入學試題

系所: 光電類

第3頁/共3頁

科目: 電磁學

*本科考試可使用計算器,廠牌、功能不拘

$$\mathbf{E}(z,t) = \mathbf{E}_0 \cos(kz - \omega t) \,\hat{x}.$$

- (a) Write the corresponding magnetic field $\mathbf{B}(z,t)$ using Maxwell's equations. (10 marks)
- (b) Calculate the magnitude and direction of the Poynting vector **S**. (10 marks)
- 2. (20marks) Two parallel conducting sheets located at $z = \pm d$ carry surface currents $\mathbf{K}_{+} = K_{0}\hat{\mathbf{x}}$ (z = d) and $\mathbf{K}_{-} = -K_{0}\hat{\mathbf{x}}$ (z = -d), respectively.
 - (a) Find the magnetic field **B** in the region above (z > d), between (-d < z < d), and below (z < -d) the two sheets. (10 marks)
 - (b) Calculate the interacting force per unit area between these two sheets.

(10 marks)

