中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/1246
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47032124      在线人数 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/1246


    题名: 結合模擬退火之改良粒子群演算法於結構最佳化設計的研究
    作者: 林大為;Da-Wei Lin
    贡献者: 土木工程研究所
    关键词: 混合高階啟發式演算法;結構輕量化設計;混合搜尋法;粒子群演算法;模擬退火法;hybrid meta-heuristic algorithm.;optimum structural design;modified PSO;simulated annealing
    日期: 2009-04-24
    上传时间: 2009-09-18 17:24:38 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本文主要是針對連續變數、離散變數、混合變數之最佳化設計問題,提出以結合改良過後的粒子群演算法(MPSO)與模擬退火法(SA)的混合高階啟發式演算法,即MPSO-SA。PSO為全域隨機性的搜尋法,其概念簡單且不需調整過多參數。從過去的研究中顯示出,PSO在求解最佳化問題時,粒子隨群體最佳解來移動,然而搜尋過程中的群體最佳解可能僅是局部最佳解或近似局部最佳解,使得粒子逐漸往局部小區域靠近而喪失整體的多樣性,將導致搜尋後期收斂速度過慢,落於局部次佳解中。為了改善此缺失,本文採用了避開較差解的概念來改良PSO,再將改良過的PSO(MPSO)與SA兩種演算法加以混合,期望能藉SA的跳躍機制,使得於搜尋過程中能有效地進行全域和局部搜尋,以加強整體的搜尋性能。藉由數個結構輕量化設計問題來探討其適用性和影響求解品質與效率的相關參數,並在設計結果之比較,來探討本文所發展之MPSO-SA的優缺點。比較結果顯示MPSO-SA求解多數混合變數之最佳化問題時,具有良好的求解能力及穩定性。 Particle Swarm Optimization has been used effectively for many types of optimization problems. The PSO is an evolutionary computation technique which has ability in performing global search. Many challenges arise when the algorithm is applied to heavily constrained problems where feasible regions may be sparse or disconnected. This report is devoted to the presentation of a hybrid search algorithm, namely MPSO–SA, for optimum design of structures with continuous, discrete and mixed variables. The main deficiency of the PSO is that all particles have the tendency to fly to the current best solution which may be a local optimum or a solution near local optimum. In this case, all particles will move toward to a small region and the global exploration ability will be weakened. To overcome the drawback of premature convergence of the method and to make the algorithm explore the local and global minima by the simulated annealing method (SA) and a modified PSO (MPSO), respectively. More than ten typical structures are used to validate the effectiveness of the algorithm. The results from comparative studies of the MPSO-SA against other optimization algorithms are reported to show the solution quality of the proposed algorithm.
    显示于类别:[土木工程研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明