摘要 在微細加工的領域中,放電加工能夠加工直徑小於100μm的孔徑,但易產生放電坑、再鑄層與微裂痕,因此加工後的孔徑與粗糙度不盡理想,嚴重影響微孔的表面品質,而本研究為了改善放電加工所產生的缺點,擬開發利用複合電鍍沉積方式製作微研磨工具,並以高鎳合金為工件材料,期能將放電加工後的微細孔洞進行孔壁研磨加工,而獲得高精度且低粗糙度的精微孔洞,以作為精密工業之用。 實驗結果顯示,以電流為10mA、陽極環孔徑為5mm、磨粒粒徑為4μm、轉速為15rpm、磨粒添加量為10g/L與CTAB界面活性劑為150ppm等參數進行複合電鍍沉積微型研磨工具,並再以進給速度30μm/min對放電過後的微孔進行研磨加工時,可得到較光滑平整的微孔孔壁,孔壁表面粗糙度值由1.47μm Rmax (0.2μm Ra)降至0.462μm Rmax (0.026μm Ra)。 Abstract This study presents a novel process of using micro-electro-discharge-machining (micro-EDM) combined with electro-codeposition to fabricate the micro-grinding-tool to machining a micro-hole on high nickel alloy. During the machining process, a micro-grinding-tool is fabricated by wire electro-discharge grinding (WEDG) and electro-codeposition directly by using micro-EDM for machining the micro-hole and by micro-grinding to finish the hole wall. The experimental result shows the suitable parameters obtained to fabricating micro-grinding-tool for electro-codeposition are considered to be the following: electric current of 10 mA, hole diameter of positive ring is 5 mm, SiC particle size of 4μm, SiC particle concentration of 10 g/L, rotational speed of 15 rpm and CTAB of 150 ppm. By this method, The micro-grinding-tool will provided with smoothness surface on coating layer, uniform particle distribution and suitable adhesion particle quantity. Finally, the tool feed adopts as 30 μm/min in micro-grinding process, the surface roughness reduces from 1.47 μm Rmax (0.2 μm Ra) to 0.462 μm Rmax (0.026 μm Ra) after micro-grinding.