中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27696
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47011728      在线人数 : 124
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27696


    题名: A DYNAMIC LEARNING NEURAL-NETWORK FOR REMOTE-SENSING APPLICATIONS
    作者: TZENG,YC;CHEN,KS;KAO,WL;FUNG,AK
    贡献者: 太空及遙測研究中心
    关键词: CLASSIFICATION
    日期: 1994
    上传时间: 2010-06-29 18:52:27 (UTC+8)
    出版者: 中央大學
    摘要: The neural network learning process is to adjust the network weighs to adapt the selected training data. Based on the polynomial basis function (PBF) modeled neural network that is a modified multilayer perceptrons (MLP) network, a dynamic learning algorithm (DL) is proposed in this paper. The presented learning algorithm makes use of Kalman filtering technique to update the network weights, in the sense that the stochastic characteristics of incoming data sets are implicitly incorporated into the network. The Kalman gains which represent the learning rates of the network weights updating are calculated by using the U-D factorization. By concatenating all of the network weights at each layer to form a long vector such that it can be updated without propagating back, the proposed algorithm improves the performance of convergence to which the back-propagation (BP) learning algorithm often suffers. Numerical illustrations are carried out using two categories of problems: multispectral imagery classification and surface parameters inversion. Results indicates the use of Kalman filtering algorithm not only substantially increases the convergence rate in the learning stage, but also enhances the separability for highly nonlinear boundaries problems, as compared to BP algorithm, suggesting that the proposed DL neural network provides a practical and potential tool for remote sensing applications.
    關聯: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
    显示于类别:[太空及遙測研究中心] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML777检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明