The conical spin order of multiferroic CoCr2O4 has been studied by a neutron diffraction to investigate its magnetic phase transitions at temperatures below 40 K. Magnetic order of a spiral spin component with an incommensurate propagation vector of (0.63, 0.63, 0) was observed at 26 K, while at 14.5 K, the incommensurate conical spin order showed a transition into the fixed commensurate propagation vector of (2/3, 2/3, 0). In addition, two satellite peaks with propagation vectors of (0.035, 0, 0) and (0, 0.035, 0) from the commensurate vector were observed. The widths of these peaks indicate a long-range magnetic order. This new magnetic configuration below 14.5 K may lead to a new model of multiferroic behavior differing from the well-known spin-current model for magnetic ferroelectricity.