English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47024172      線上人數 : 184
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44436


    題名: 有限長度圓形土柱實驗二維溶質傳輸之解析解;An analytical solution for two-dimensional radial transport in a finite soil
    作者: 陳寬哲;Kuan-jhe Chen
    貢獻者: 應用地質研究所
    關鍵詞: 通用積分轉換;土柱實驗;延散係數;column test;general integral transform technique;finite Hankel transform;dispersion coefficient
    日期: 2010-07-29
    上傳時間: 2010-12-09 10:52:17 (UTC+8)
    出版者: 國立中央大學
    摘要:   二維徑向土柱實驗配合數學模式可推估縱向及側向延散係數,在現有的相關研究中,數學模式常假設土柱長度為無窮大,此假設較不符合實際情況。本研究發展在有限長土柱之二維圓柱座標系統移流-延散方程式之解析解,以描述圓柱形之二維溶質傳輸,分別利用finite Hankel轉換與通用積分轉換方法(GITT)求得解析解,所發展的解析解與Laplace轉換有限差分法(LTFD)進行驗證,驗證結果兩者十分吻合。因為執行積分轉換後的解析解包含finite Hankel與GITT逆轉換級數,當Peclet number較大與延散度比很小時,需要比較高的累加次數才能夠讓解收斂。和前人發展的解析解比較並對邊界條件的影響進行討論,Peclet number較小時若以無窮大邊界的數學模式進行推估可能會低估延散係數。發展的解析解進一步可應用於分析土柱實驗所得濃度穿透曲線,推估孔隙率、縱向與側向延散係數。  Two-dimensional radial column experiment combine with mathematical models to estimate longitudinal and transverse dispersion coefficient. Existing research of mathematical models assumed infinite length of column, but this assumption is not conforming to the actual circumstances. In this research, we developed a analytical solution of the two-dimensional advection-dispersion equations in cylindrical coordinates with a finite soil column for describing solute transport in two-dimensional cylindrical geometry. This analytical solution is obtained in the use of finite Hankel transform and generalized integral transform technique (GITT). Development of analytical solution is verified with Laplace transform finite difference (LTFD). This analytical solution consists of two infinite series expansions after the finite Hankel and GITT inverse transforms. When Peclet number larger and the dispersion ratio is very small, it needs more the number of summed terms for solution convergence. We compared with the previous development of analytical solution, and discussed the effect of different boundary conditions. When the Peclet number are smaller, the concentration of infinite boundary will be lower. If the analytical solutions with infinite boundary condition are used to estimate the solute transport parameters, and therefore underestimate the dispersion coefficients. We further used to analyze the concentration breakthrough curve of column test and estimated porosity, longitudinal and transverse dispersion coefficients.
    顯示於類別:[應用地質研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML911檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明