English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 49679352      線上人數 : 524
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44664


    題名: 使用模糊理論於穩態視覺誘發之腦波人機介面判斷;Applying fuzzy theory to the command classification in a steady-state visual evoked potential based brain computer interface
    作者: 廖偉廷;Wei-ting Liao
    貢獻者: 電機工程研究所
    關鍵詞: 模糊理論;腦電波;大腦人機介面;穩態視覺誘發電位;Brain-computer interface (BCI);electroencephalography (EEG);steady-state visual evoked potential (SSVEP);fuzzy theory
    日期: 2010-07-15
    上傳時間: 2010-12-09 13:52:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究開發利用模糊理論於穩態視覺誘發(Steady-State Visual Evoked Potential, SSVEP)之大腦人機界面(Brain Computer Interface, BCI)判斷。受測者注視閃光頻率為32Hz且不同相位的4個閃光,使大腦誘發出相對應32Hz的穩態視覺誘發電位。使用數位22Hz~42Hz帶通濾波器濾腦波訊號(electroencephalography, EEG),並利用疊加平均的方法處理訊號,為判斷做前置處理。訊號處理的末端利用模糊理論來對每個不同受測者的腦波訊號做最佳化判斷,並把所有對腦波訊號的訊號處理及決策以微處理器硬體實現,最後把判斷的結果用無線藍芽模組傳輸到電腦用LabVIEW收結果,並藉以控制人形機器人,實現受測者所要下達給機器人的指令。實驗結果發現受測者用模糊理論判斷方法比一般選項判斷方法,其準確率提高1~12%,平均準確率為93.38 ± 5.74%,平均的ITR為60.26 ± 23.71 bits/min,從結果可以明顯看出模糊判斷方法可以改善一般判斷方法的不足,進而提高準確率。The thesis applied Fuzzy Theory to the judgment of steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI).User gazed at flash channels(FCs) that encoded with different phases in order to induce the corresponding SSVEP , so that the gazed FC can be recognized and the command mapping to the gazed FC can be sent out to achieve control purposes. In the thesis, the frequency of FC is 32 Hz, and there are four FCs with different phases 0゚, 90゚, 180゚ and 270゚. The SSVEP responses were processed by 20–36 Hz filter and epoch-average.Using Fuzzy Theory to optimize the judgment of BCI system can reduce the occurrence of error judgments. We use a micro-processor to do all the signal process about electroencephalography (EEG), and transmit the result to PC with Bluetooth. PC will sent out the control direction to the robot, and the robot do the actions that user wants.The experiment results show that apply Fuzzy Theory to the judgment of BCI system can increase more 1~12% accuracy than normal judgment theory. Some subjects’ accuracy can even reach 100% by using Fuzzy Theory.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML598檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明