中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48004
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47019759      Online Users : 118
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48004


    Title: 應用ASTER影像於南蒙古戈壁沙漠區之地表礦物辨識;Mapping surface materials of the Gobi desert area using ASTER images, Southern Mongolia
    Authors: 孟和額爾登;Munkh-Erdene Altangerel
    Contributors: 遙測科技碩士學位學程
    Keywords: 風化礦物;N維視覺化工具;像素純度指數;最小噪音轉換;ASTER;alieration minerals;N-dimensional visualization;Pixel purity index;minimum noise fraction;ASTER
    Date: 2011-07-28
    Issue Date: 2012-01-05 14:24:44 (UTC+8)
    Abstract: Terra衛星所酬載的ASTER感測器涵蓋廣泛的光譜範圍,從可見光到熱紅外線共有14個波段。藉由分析不同波段的影像,可以辨別和繪製地表的岩石種類和預測礦物的風化程度與組合。本研究利用ASTER影像對南蒙古戈壁南蒙古沙漠進行多光譜分析。該地區極度乾旱、幾乎無植被的地表,十分有利應用遙測技術於地表岩性判釋。將衛星影像進行幾合與輻射修正,以及光譜分析後,本研究提出該地區地表風化礦物的分類。光譜分類根據下列步驟進行: a)以最小噪音分離轉換(MNF)降低光譜雜訊 b)以像素純度指數(PPI)分析降低像素數目 c)使用N維視覺化工具(N-dimentional visualizer)進行端元判定 此外,本研究亦結合遙測影像和地形圖,應用地理資訊系統技術,配合地質資料來檢測所繪製的風化礦物分佈圖。結果顯示在本研究區域中,應用MNF、PPI、n-D visualizer等分析方法於風化礦物的判釋確實可行。 The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) cover a wide spectral region with 14 bands from visible to the thermal infrared. The different band ranges can be capable discriminating and mapping surface rocks and predict minerals on alteration assemblages of potential targets. The aim of this work is a multispectral analysis of the area of interest using ASTER sensor image on board the satellite Terra. This research work presents classification of different minerals in Gobi (Southern Mongolia) desert and almost non-vegetated arid area. The Satellite imagery has been corrected geometrically and radiometrically. The spectral classification was done according to the following steps: a) Spectral reduction by the Minimum Noise Fraction (MNF) transformation, b) Spatial reduction by the Pixel Purity Index (PPI) and c) Manual identification of the endmembers using the N-dimensional visualizer. This research work was used remotely sensed imagery and topographical map, and Remote Sensing and GIS techniques to detect mineral alteration mapping. Ground truth data have been used for validation as a reference. The application of the sequence MNF, PPI and n-D visualizer in the study area showed possibility of the identification of different mineral and different rock types.
    Appears in Collections:[Master of Science Program in Remote Sensing Science and Technology ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1196View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明