中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48930
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47025788      Online Users : 112
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48930


    Title: 基於字詞關係動態建立階層分群;Dynamic Hierarchical Clustering Based on Taxonomy
    Authors: 陳信夫;Hsin-fu Chen
    Contributors: 資訊管理研究所
    Keywords: 階層分群演算法、動態分群演算法、分類學 、文件分群;Dynamic clustering algorithm;Hierarchical clustering;Taxonomy
    Date: 2011-06-29
    Issue Date: 2012-01-05 15:10:46 (UTC+8)
    Abstract: 資訊爆炸時代的來臨,越來越多使用者在網路上搜尋相關資料進行閱讀。本研究目標是將大量文件資料進行階層分群(Hierarchical Clustering),並以字詞關係建置具有上下包含關係的分類學(Taxonomy),以用來成為階層群集的標籤。運用上,能方便使用者快速瞭解文件集有哪些主題,迅速選擇所需主題的文件進行閱讀。本研究提出的系統架構有效地改善了階層群集研究上的五個議題:高維度的向量、動態的特徵選取與文件分群、文件處理順序、文件跨領域分群與群集標籤之間的關係。 With the popularity of Internet, the World Wide Web contains a giant amount of information. To search relevant information from large number of texts becomes a challenge to the users. Hierarchical clustering is one of the methods to conquer this problem. Because its features let users can browse the topic gradually and find out the most relevant documents they have interesting. But there are still have some challenge in hierarchical clustering must be addressed, like high dimensionality of the data, dynamic data sets, the sensitivity of input order, documents has several concept, and the relationship of clusters and tags. In this paper, we propose an approach of dynamic hierarchical clustering based on taxonomy to conquer those challenges. The experimental result shows that our method not only suitable for constructing hierarchical clustering in dynamic data sets, but also offer a easier structure to browse than traditional algorithms, BKM and UPGMA. In addition, the clusters are labeled meaningful tags with the relationship of containment can let users understand the whole concept of clusters rapidly.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML614View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明