中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50436
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47017655      在线人数 : 186
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50436


    题名: COSMIC observations of dayside total electron content enhancements in response to moderate disturbances in the solar wind
    作者: Lai,PC;Lin,CS;Burke,WJ;Huang,CM;Chen,MQ
    贡献者: 太空科學研究所
    关键词: TRANSPOLAR POTENTIAL SATURATION;GREAT MAGNETIC STORM;HILL MODEL;MARCH 1989;FIELD;IONOSPHERE;PENETRATION;EXPLORER;STREAMS;SYSTEM
    日期: 2011
    上传时间: 2012-03-27 17:31:52 (UTC+8)
    出版者: 國立中央大學
    摘要: We have analyzed measurements from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites acquired during an 81 day interval in late 2007 to study total electron content (TEC) responses of the dayside ionosphere during three consecutive passes of a high-speed stream (HSS) in the solar wind by Earth. During the second encounter the HSS arrival was closely preceded by the arrival at the first Lagrange point L(1) of an interplanetary coronal mass ejection (ICME). In all cases the corotating interaction region (CIR) at the HSS's leading edge was characterized by increases in both n(SW) and T(P) above predisturbance levels, and large-amplitude oscillations in all interplanetary magnetic field (IMF) components. The solar wind events induced moderate magnetic storm activity; the minimum Dst of -71 nT occurred during the second encounter. TEC enhancements appeared at low-magnetic to midmagnetic latitudes during the ICME/CIR-driven storm. Some increases exceeded quiet time values by factors of similar to 110%. In the absence of local auroral electron precipitation to create new plasma in the magnetic latitude domain of COSMIC measurements, the detected TEC increases must reflect transport effects. The COSMIC main phase observations of dayside TEC enhancement are explained as being caused by an ionospheric storm time &quot;fountain&quot; effect driven by weak (<1 mV/m) penetration electric fields. Our observations suggest that penetration dawn-to-dusk electric fields cause plasma to drift upward and toward higher latitudes. Plasma and field measurements from the Advanced Composition Explorer (ACE) allow estimates of penetration electric fields that we mapped to the ionosphere to calculate plasma transport velocities. We argue that observed TEC dynamics reflect the interplay between storm time transport and the production/loss histories of plasma parcels as they rotate around Earth.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
    显示于类别:[太空科學研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML844检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明