中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51123
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47019412      在线人数 : 105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51123


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51123


    题名: A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation
    作者: Hwang,FN;Wei,ZH;Huang,TM;Wang,WC
    贡献者: 數學系
    关键词: ELECTRONIC STATES;HERMITIAN EIGENPROBLEMS;NUMERICAL SCHEMES;LIMITED MEMORY;ENERGY-STATES;SYSTEMS;EIGENSOLVER;SEEKING
    日期: 2010
    上传时间: 2012-03-27 18:22:25 (UTC+8)
    出版者: 國立中央大學
    摘要: We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc's efficient and various parallel operations, linear solvers. preconditioning schemes, and easy usages. The parallel eigenvalue solver is then used to solve higher degree polynomial eigenvalue problems arising in numerical simulations of three dimensional quantum dots governed by Schrodinger's equations. We find that the parallel restricted additive Schwarz preconditioner in conjunction with a parallel Krylov subspace method (e.g. GMRES) can solve the correction equations, the most costly step in the Jacobi-Davidson algorithm, very efficiently in parallel. Besides, the overall performance is quite satisfactory. We have observed near perfect superlinear speedup by using up to 320 processors. The parallel eigensolver can find all target interior eigenpairs of a quintic polynomial eigenvalue problem with more than 32 million variables within 12 minutes by using 272 Intel 3.0 GHz processors. (C) 2009 Elsevier Inc. All rights reserved.
    關聯: JOURNAL OF COMPUTATIONAL PHYSICS
    显示于类别:[數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML557检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明