中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51180
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47013664      在线人数 : 140
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51180


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51180


    题名: A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems
    作者: Huang,TM;Hwang,FN;Lai,SH;Wang,WC;Wei,ZH
    贡献者: 數學系
    关键词: LINEAR-SYSTEMS;QUANTUM-DOT;FORMULATION;ALGORITHM
    日期: 2011
    上传时间: 2012-03-27 18:24:14 (UTC+8)
    出版者: 國立中央大學
    摘要: We consider a rational algebraic large sparse eigenvalue problem arising in the discretization of the finite element method for the dissipative acoustic model in the pressure formulation. The presence of nonlinearity due to the frequency-dependent impedance poses a challenge in developing an efficient numerical algorithm for solving such eigenvalue problems. In this article, we reformulate the rational eigenvalue problem as a cubic eigenvalue problem and then solve the resulting cubic eigenvalue problem by a parallel restricted additive Schwarz preconditioned Jacobi-Davidson algorithm (ASPJD). To validate the ASPJD-based eigensolver. we numerically demonstrate the optimal convergence rate of our discretization scheme and show that ASPJD converges successfully to all target eigenvalues. The extraneous root introduced by the problem reformulation does not cause any observed side effect that produces an undesirable oscillatory convergence behavior. By performing intensive numerical experiments, we identify an efficient correction-equation solver, an effective algorithmic parameter setting, and an optimal mesh partitioning. Furthermore, the numerical results suggest that the ASPJD-based eigensolver with an optimal mesh partitioning results in superlinear scalability on a distributed and parallel computing cluster scaling up to 192 processors. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: COMPUTERS & FLUIDS
    显示于类别:[數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML672检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明