中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51217
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47018140      在线人数 : 239
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51217


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51217


    题名: THE EFM APPROACH FOR SINGLE-INDEX MODELS
    作者: Cui,X;Hardle,WK;Zhu,LX
    贡献者: 數學系
    关键词: GENERALIZED LINEAR-MODELS;DIMENSION REDUCTION;SEMIPARAMETRIC ESTIMATION;REGRESSION;PREDICTORS
    日期: 2011
    上传时间: 2012-03-27 18:25:12 (UTC+8)
    出版者: 國立中央大學
    摘要: Single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model index coefficients beta is one of the most important objectives in the statistical analysis. However, the commonly used assumption on the index coefficients, parallel to beta parallel to = 1, represents a nonregular problem: the true index is on the boundary of the unit ball. In this paper we introduce the EFM approach, a method of estimating functions, to study the single-index model. The procedure is to first relax the equality constraint to one with (d - 1) components of beta lying in an open unit ball, and then to construct the associated (d - 1) estimating functions by projecting the score function to the linear space spanned by the residuals with the unknown link being estimated by kernel estimating functions. The root-n consistency and asymptotic normality for the estimator obtained from solving the resulting estimating equations are achieved, and a Wilks type theorem for testing the index is demonstrated. A noticeable result we obtain is that our estimator for beta has smaller or equal limiting variance than the estimator of Carroll et al. [J. Amer Statist. Assoc. 92 (1997) 447-4891. A fixed-point iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Numerical studies based on simulation and on applications suggest that this new estimating system is quite powerful and easy to implement.
    關聯: ANNALS OF STATISTICS
    显示于类别:[數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML561检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明