中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51817
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47022950      在线人数 : 167
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51817


    题名: Mining fuzzy association rules from uncertain data
    作者: Weng,CH;Chen,YL
    贡献者: 資訊管理學系
    关键词: MEMBERSHIP FUNCTIONS;SEQUENTIAL PATTERNS;GENETIC ALGORITHMS;FREQUENT PATTERNS;DATABASES;SUPPORT;CLASSIFICATION;SIMILARITY;INDUCTION;KNOWLEDGE
    日期: 2010
    上传时间: 2012-03-27 19:06:51 (UTC+8)
    出版者: 國立中央大學
    摘要: Association rule mining is an important data analysis method that can discover associations within data. There are numerous previous studies that focus on finding fuzzy association rules from precise and certain data. Unfortunately, real-world data tends to be uncertain due to human errors, instrument errors, recording errors, and so on. Therefore, a question arising immediately is how we can mine fuzzy association rules from uncertain data. To this end, this paper proposes a representation scheme to represent uncertain data. This representation is based on possibility distributions because the possibility theory establishes a close connection between the concepts of similarity and uncertainty, providing an excellent framework for handling uncertain data. Then, we develop an algorithm to mine fuzzy association rules from uncertain data represented by possibility distributions. Experimental results from the survey data show that the proposed approach can discover interesting and valuable patterns with high certainty.
    關聯: KNOWLEDGE AND INFORMATION SYSTEMS
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML407检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明