中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51839
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47014072      Online Users : 121
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51839


    Title: Function Approximation with Complex Neuro-Fuzzy System Using Complex Fuzzy Sets - A New Approach
    Authors: Li,CS;Chiang,TW
    Contributors: 資訊管理學系
    Keywords: NUMERICAL DATA;LOGIC;NETWORK;RULES
    Date: 2011
    Issue Date: 2012-03-27 19:07:25 (UTC+8)
    Publisher: 國立中央大學
    Abstract: A new neuro-fuzzy computing paradigm using complex fuzzy sets is proposed in this paper. The novel computing paradigm is applied to the problem of function approximation to test its nonlinear mapping ability. A complex fuzzy set (CFS) is an extension of traditional type-1 fuzzy set whose membership is within the unit real-valued interval. For a CFS, the membership is extended to complex-valued state within the unit disc of the complex plane. For self-adaption of the proposed complex neuro-fuzzy system (CNFS), the Particle Swarm Optimization (PSO) algorithm and Recursive Least Squares Estimator (RISE) algorithm are used in a hybrid way to adjust the free parameters of the CNFS. With the novel PSO-RLSE hybrid learning method, the CNFS parameters can be converged efficiently and quickly. By the PSO-RLSE method for the CNFS, fast learning convergence is observed and great performance in accuracy is shown. In the experimental results, the CNFS shows much better performance than its traditional neuro-fuzzy counterpart and other compared approaches. Excellent performance by the proposed approach has been shown.
    Relation: NEW GENERATION COMPUTING
    Appears in Collections:[Department of Information Management] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML725View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明