中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51856
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47014725      Online Users : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51856


    Title: Determining the mean-variance relationship in generalized linear models-A parametric robust way
    Authors: Tsou,TS
    Contributors: 統計研究所
    Keywords: QUASI-LIKELIHOOD FUNCTIONS;REGRESSION
    Date: 2011
    Issue Date: 2012-03-27 19:07:45 (UTC+8)
    Publisher: 國立中央大學
    Abstract: This article introduces a parametric robust way of determining the mean-variance relationship in the setting of generalized linear models. More specifically, the normal likelihood is properly amended to become asymptotically valid even if normality fails. Consequently, legitimate inference for the parametric relationship between mean and variance could be derived under model misspecification. More details are given to the scenario when the variance is proportional to an unknown power of the mean function. The efficacy of the novel technique is demonstrated via simulations and the analysis of two real data sets. (c) 2010 Elsevier B.V. All rights reserved.
    Relation: JOURNAL OF STATISTICAL PLANNING AND INFERENCE
    Appears in Collections:[Graduate Institute of Statistics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML637View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明