中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54333
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47023150      Online Users : 184
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54333


    Title: 用有限元素法解二維不可壓縮之拉格朗日式奈維-斯托克斯方程式的一些數值結果;Some Numerical Results for Two Dimensional Incompressible Navier-Stokes Equations in Lagrangian Formulation Using Finite Element Method
    Authors: 張昶盛;Zhang,Chang-sheng
    Contributors: 數學研究所
    Keywords: 自由邊界問題;奈維-斯托克斯方程式;有限元素法;拉格朗日式;Lagrangian formulation;Finite element method;Free boundary problems;Navier-Stokes equations
    Date: 2012-08-15
    Issue Date: 2012-09-11 18:44:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 這篇論文提出不同觀點來解固定定義域(fixed domain)的奈維-斯托克斯方程式(Navier-Stokes Equations)數值解。以往用空間座標(spatial coordinate)建模流體的運動,在這裡我們改用物質座標(material coordinate),並藉有限元素法(finite element method)來研究方程式;這個方法最大的好處是許多自由邊界問題(free boundary problems)理論上可因此解出其數值解,但相對地需要花很多時間去計算。我們會用空間及物質兩種座標算出方程式的數值解,比較兩者的結果,並了解兩者之計算網格(mesh)越小時,差異會越趨近到 0 。In this thesis we propose a different point of view in solving Navier-Stokes equations on a fixed domain numerically. Instead of using the spatial coordinate to model the motion of the fluids, we formulate using the material coordinate and study the corresponding PDE by standard finite element method. The most important benifit of using the material coordinate is that a lot of free boundary problems can be theoretically solved in this fashion, while a main drawback of doing this is that it is very time-consuming. We compare the numerical results produced by these two different formulations, and conclude that the error between two sets of numerical results gets smaller as the mesh size approaches zero.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML546View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明